• Title/Summary/Keyword: stress-wave time

Search Result 209, Processing Time 0.022 seconds

Effects of geometric shape of LWSCR (lazy-wave steel catenary riser) on its global performance and structural behavior

  • Kim, Seungjun;Kim, Moo-Hyun
    • Ocean Systems Engineering
    • /
    • v.8 no.3
    • /
    • pp.247-279
    • /
    • 2018
  • This study aims to investigate the behavioral characteristics of the LWSCR (lazy-wave steel catenary riser) for a turret-moored FPSO (Floating Production Storage Offloading) by using fully-coupled hull-mooring-riser dynamic simulation program in time domain. In particular, the effects of initial geometric profile on the global performance and structural behavior are investigated in depth to have an insight for optimal design. In this regard, a systematic parametric study with varying the initial curvature of sag and arch bend and initial position of touch down point (TDP) is conducted for 100-yr wind-wave-current (WWC) hurricane condition. The FPSO motions, riser dynamics, constituent structural stress results, accumulated fatigue damage of the LWSCR are presented and analyzed to draw a general trend of the relationship between the LWSCR geometric parameters and the resulting dynamic/structural performance. According to this study, the initial curvature of the sag and arch bend plays an important role in absorbing transferred platform motions, while the position of TDP mainly affects the change of static-stress level.

A Study on the Numerical Models of Wave induced Currents (파랑에 의한 연안류의 수치모델에 관한 연구)

  • Lee, Jung-Maan;Kim, Jae-Joong;Park, Jung-Chul
    • Journal of Ocean Engineering and Technology
    • /
    • v.12 no.3 s.29
    • /
    • pp.75-85
    • /
    • 1998
  • A finite difference model for predicting time-dependent, wave-induced nearshore current is studied. The model includes wave refraction, wave-current interaction, bottom friction and wind effect. This model iteratively solved the linear the linear set of conservation of both mass and momentum, which were time averaged (over one wave period) and depth integrated, for mean velocities and free surface displacement. Numerical simulations of nearshore current under oblique wave attack, and for wave and wind induced current on a longshore periodic beach are carried out. Longshore velocities tend to zero in some distances outside the breaker line. And the peak velocity is shifted shoreward at the breaker line. The results represent the general characteristics of the nearshore current induced by wave.

  • PDF

Wave propagation in a microbeam based on the modified couple stress theory

  • Kocaturk, Turgut;Akbas, Seref Doguscan
    • Structural Engineering and Mechanics
    • /
    • v.46 no.3
    • /
    • pp.417-431
    • /
    • 2013
  • This paper presents responses of the free end of a cantilever micro beam under the effect of an impact force based on the modified couple stress theory. The beam is excited by a transverse triangular force impulse modulated by a harmonic motion. The Kelvin-Voigt model for the material of the beam is used. The considered problem is investigated within the Bernoulli-Euler beam theory by using energy based finite element method. The system of equations of motion is derived by using Lagrange's equations. The obtained system of linear differential equations is reduced to a linear algebraic equation system and solved in the time domain by using Newmark average acceleration method. In the study, the difference of the modified couple stress theory and the classical beam theory is investigated for the wave propagation. A few of the obtained results are compared with the previously published results. The influences of the material length scale parameter on the wave propagation are investigated in detail. It is clearly seen from the results that the classical beam theory based on the modified couple stress theory must be used instead of the classical theory for small values of beam height.

A Study of Driver Brain Wave Characteristics through Changes in Headlamp Brightness

  • Kim, Hyun-Ji;Kim, Hyun-Jin;Kim, Gi-Hoon;Lee, Chang-Mo;Kim, Hoon;An, Ok-Hee
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.9
    • /
    • pp.1-6
    • /
    • 2007
  • In this study, tests of brain waves were carried out to investigate the physiological characteristics of drivers during a change of headlight brightness. The participants were 20 males in their 20s. Twenty-three different conditions combining the waveform of light, voltage, and alteration time were used. The measurement of brain waves was performed by an internationally standardized 10-20 method using LXE3232-RF. The results were as follows. 1. From the results of the brain wave map analysis, it was suggested that waveform A increases mental stress and waveform B affects mental and visual stress. The longer the stimulation time, the more stress level was detected. 2. The voltage alteration time of the B waveform should be kept to less than 1500msec, while the voltage should not fall below 11.5[V].

Study on Mensurability of Internal Defect Prediction and of Classification of Log by NDE(Non-Destructive Evaluation) (I) - Focused on Cross Direction of Log - (비파괴 시험방법을 이용한 원목 내부결함 예측 및 분류의 계량화(計量化)에 관한 연구 (I) - 원목의 횡단방향을 중심으로 -)

  • Park, Heon;Gang, Eun-Chang;Chun, Sung-Jin;Yoon, Kyung-Seob
    • Journal of the Korean Wood Science and Technology
    • /
    • v.23 no.2
    • /
    • pp.47-54
    • /
    • 1995
  • This study was to measure the properties of logs and classify them by non-destructive methods. The purpose of this experiment was focused at mensurability of logs by non-destructive methods. The non-destructive instrument, Stress-Wave Timer 239A which was made by Metriguard in U.S.A., was used. The stress wave velocities of log's cross direction were measured and compared with three different methods; 1. with hammer, 2. with hammer and D.B.H. meter, 3. with manufactured instrument. Number of used logs were seven logs, which were classified by naked eye into six groups; very severe rot, severe rot, mild rot & knot, mild rot & check, mild rot, sound log, and in diameter were into three groups; large(57.4cm), medium(36~41.2cm), small(28.9cm) log. The results, which were classified by mensurability with non-destructive methods, were followed; 1. The stress wave velocities were very different between rot and sound log. So it meant the possibility of mensurability of logs by non-destructive method even if high standard error. 2. The stress wave velocities decreased with checks more than with rots, which meant the checks affected speeds more. 3. The stress wave velocities increased with knot. 4. The velocities with manufactured instrument showed lower standard error, so more accurate results than other methods. Especially the required labour decreased from 3~4 to 2 persons. 5. Finally, the mensurability showed more accurate results and made the classification of logs scientific.

  • PDF

A Study on the assessment of stress using Wireless ECG (무선 심전도측정을 통한 스트레스 평가에 관한 연구)

  • Lim, Chae-Young;Kim, Kyung-Ho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.2
    • /
    • pp.17-23
    • /
    • 2011
  • In this paper, daily life stress monitoring system is proposed. The proposed wireless ECG module, reducing the noise and increasing the size of signal, amplification circuit was designed for. Using HRV(Heart Rate Variability), extracted by measuring R-wave, stress diagnostic algorithms to assess the stress of human emotion were developed. For monitoring the activities, the proposed system is consist of small rectangular size for portable and by simple measurement it is possible to measure at any time. Through experiments, the proposed approach to represent user's stress level can be confirmed. Through that, it can see appropriate structure to obtain R-wave for stress assess as well as high resemblance to the clinical electrocardiogram. In this paper, performed experiments was developed nonrestraint measuring and wearable wireless biometric scanner that is able to monitor the heart's electrical activity of everyday life.Using this, the algorithm system, that is able to assess stress index through time-domain and frequency-domain analysis of the front and the rear of performing stress load protocol, was developed,

Application of Bender Elements in Consolidation, Tomography, and Liquefaction Tests (압밀, 토모그래피, 액상화시험에서 벤더엘리먼트의 적용)

  • Lee, Jong-Sub;Lee, Chang-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.8
    • /
    • pp.43-54
    • /
    • 2006
  • The scope of this paper covers the applications of bender element tests in consolidation, tomography, and liquefaction. Loading and unloading time during consolidation are evaluated based on shear wave velocity. As S-wave velocity is dependent on effective stress, the loading step may be determined. However, cautions are required due to the different mechanism between the settlement and effective stress criteria. The stress history may be evaluated because the S-wave shows the cement controlled regime and stress controlled regimes. A fixed frame complemented with bender elements permits S-wave tomography The tomography system is tested at low confinement within a true triaxial cell. Results show that shear wave velocity tomography permits monitoring changes in the velocity field which is related to the average effective stress. To monitor the liquefaction phenomenon, S-wave trans-illumination is implemented with a high repetition rate to provide detailed information on the evolution of shear stiffness during liquefaction. The evolution of shear wave propagation velocity and attenuation parallel the time-history of excess pore pressure during liquefaction. Applications discussed in this paper show that bender elements can be a very effective tool for the detection of shear waves in the laboratory.

Optimal Use of Stress Waves in Non-Intrusive Seismic Techniques for Geotechnical Applications

  • Joh, Sung-Ho
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.10a
    • /
    • pp.434-478
    • /
    • 2006
  • Stress waves have been used for geophysical and geotechnical applications for more than 50 years. The early-stage applications were simply based on travel-time measurements of stress waves and limited to site characterization. Currently stress-wave techniques are expanded to monitoring processes for grouting of damaged geotechnical structures, compaction of embankment, and deformational analyses for static geotechnical problems. Seismic techniques used to be good enough for rough estimators of engineering properties. Nowadays, the sophisticated modeling theory of stress-wave propagation substantially improved reliability and accuracy of the seismic techniques. In this paper, difficulties involved in currently available seismic techniques are discussed and analyzed. Herein some recently-developed non-intrusive seismic techniques, which make optimal use of stress waves for further improvement of reliability and accuracy, are also presented.

  • PDF

Fractional wave propagation in radially vibrating non-classical cylinder

  • Fadodun, Odunayo O.;Layeni, Olawanle P.;Akinola, Adegbola P.
    • Earthquakes and Structures
    • /
    • v.13 no.5
    • /
    • pp.465-471
    • /
    • 2017
  • This work derives a generalized time fractional differential equation governing wave propagation in a radially vibrating non-classical cylindrical medium. The cylinder is made of a transversely isotropic hyperelastic John's material which obeys frequency-dependent power law attenuation. Employing the definition of the conformable fractional derivative, the solution of the obtained generalized time fractional wave equation is expressed in terms of product of Bessel functions in spatial and temporal variables; and the resulting wave is characterized by the presence of peakons, the appearance of which fade in density as the order of fractional derivative approaches 2. It is obtained that the transversely isotropic structure of the material of the cylinder increases the wave speed and introduces an additional term in the wave equation. Further, it is observed that the law relating the non-zero components of the Cauchy stress tensor in the cylinder under consideration generalizes the hypothesis of plane strain in classical elasticity theory. This study reinforces the view that fractional derivative is suitable for modeling anomalous wave propagation in media.

Dynamic Stress Intensity Factors of the Half Infinite Crack in the Orthotropic Material Strip with a Large Anisotropic Ratio (이방성비가 큰 직교이방성체의 반 무한 균열에 대한 동적 응력확대계수에 관한 연구)

  • Baek, Un-Cheol;Hwang, Jae-Seok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.6 s.177
    • /
    • pp.1557-1564
    • /
    • 2000
  • When the half infinite crack in the orthotropic material strip with a large anisotropic ratio(E11>>E22) propagates with constant velocity, dynamic stress component $\sigma$y occurre d along the $\chi$ axis is derived by using the Fourier transformation and Wiener-Hopf technique, and the dynamic stress intensity factor is derived. The dynamic stress intensity factor depends on a crack velocity, mechanical properties and specimen hight. The normalized dynamic stress intensity factors approach the maximum values when normalized time(=Cs/a) is about 2. They have the constant values when the normalized time is greater than or equal to about 2, and decrease with increasing a/h(h: specimen hight, a: crack length) and the normalized crack propagation velocity( = c/Cs, Cs: shear wave velocity, c: crack propagation velocity).