• Title/Summary/Keyword: stress-wave time

Search Result 210, Processing Time 0.024 seconds

A convergence study on the properties of hair coated with Ginkgo biloba extract (은행잎 추출물 도포 모발의 물성(物性)에 관한 융합적 연구)

  • Park, Jang-Soon
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.8
    • /
    • pp.223-228
    • /
    • 2020
  • The need to steadily manage healthy hair for a beautiful hairstyle is emerging, and it is time to develop hair cosmetics using natural antioxidants that are harmless to the human body according to the needs of the times. Therefore Max. Load, Max. Stress, Max. Elongation, and breakage on the hair coated with the extract of Ginkgo biloba L. According to the Break Load, Break Stress, Break Elongation, Max. Various convergence property experiments such as modulus and Tangential modulus values were conducted. As a result of research, the hairs coated with Ginkgo biloba extract had an overall increase in intrinsic properties including tensile strength compared to the control group. Through this study, we intend to study the potential of Ginkgo biloba L. as a useful material for hair cosmetics such as permanent wave preparations as well as health supplements and medicines that have been released, and we expect that it will be provided as useful research data for the subsequent development of various hair cosmetics.

A Study on the Focal Mechanism of the Hongsung Earthquake from the P-Wave Polarity Distributions (초동극성분포를 이용한 홍성지진의 Focal Mechanism 연구)

  • 김준경
    • The Journal of Engineering Geology
    • /
    • v.1 no.1
    • /
    • pp.121-136
    • /
    • 1991
  • The focal mechanism of the Hongsung Earthquake (1978. Oct. 7, M$_L$=5.0, Latitude 36.62N, Longitude 1 26.67E) was evaulated using the polarity distribution of the P-Waveforms. Through the non-linear computer process, the compatibility of polarity distributions of the 9 P-Waveforms observed at teleseismic distances from the Hongsung Earthquake epicenter was investigated to those of the focal mechanism determined from the varying strike, dip and rake angles. The resultant values for the strike and dip angle of the principal fault plane, which apparently matches very well the sunface lineament of the Hongsung region, are determined to be about 247 degree and 78 degree with uncertainties, respectively. However, the rake angle of the focal mechanism has wide range of 40 degree to 160 degree, which is mainly due to the poor coverage of the azimuthal angle of the observed seismic stations. Due to the consistency of principal stress axes, the resultant focal mechanism could support the current stress regime of that region, which may be caused by subduction of the Pacific Plate under the Eurasia Plate along the Japan Trench. It also provides information of seismic source characteristics of the part of the Korean Peninsula for aseismic design criteria such as Site Specific Response Spectrum and Strong Ground Motion Time History for the nuclear power plants and related nuclear waste disposal facility sites.

  • PDF

Disease Prediction of Depression and Heart Trouble using Data Mining Techniques and Factor Analysis (데이터마이닝 기법 및 요인분석을 이용한우울증 및 심장병 질환 예측)

  • Yousik Hong;Hyunsook Lee;Sang-Suk Lee
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.4
    • /
    • pp.127-135
    • /
    • 2023
  • Nowadays, the number of patients committing suicide due to depression and stress is rapidly increasing. In addition, if stress and depression last for a long time, they are dangerous factors that can cause heart disease, brain disease, and high blood pressure. However, no matter how modern medicine has developed, it is a very difficult situation for patients with depression and heart disease without special drugs or treatments. Therefore, in many countries around the world, studies are being actively conducted to determine patients at risk of depression and patients at risk of suicide at an early stage using electrocardiogram, oxygen saturation, and brain wave analysis functions. In this paper, in order to analyze these problems, a computer simulation was performed to determine heart disease risk patients by establishing heart disease hypothesis data. In particular, in order to improve the predictive rate of heart disease by more than 10%, a simulation using fuzzy inference was performed.

Thermoelastic dynamic analysis of wavy carbon nanotube reinforced cylinders under thermal loads

  • Moradi-Dastjerdi, Rasool;Payganeh, Gholamhassan
    • Steel and Composite Structures
    • /
    • v.25 no.3
    • /
    • pp.315-326
    • /
    • 2017
  • In this work, thermoelastic dynamic behavior of functionally graded carbon nanotube reinforced composite (FG-CNTRC) cylinders subjected to mechanical pressure loads, uniform temperature environment or thermal gradient loads is investigated by a mesh-free method. The material properties and thermal stress wave propagation of the nanocomposite cylinders are derived after solving of the transient thermal equation and obtaining of the time history of temperature field of the cylinders. The nanocomposite cylinders are made of a polymer matrix and wavy single-walled carbon nanotubes (SWCNTs). The volume fraction of carbon nanotubes (CNTs) are assumed variable along the radial direction of the axisymmetric cylinder. Also, material properties of the polymer and CNT are assumed temperature-dependent and mechanical properties of the nanocomposite are estimated by a micro mechanical model in volume fraction form. In the mesh-free analysis, moving least squares shape functions are used to approximate temperature and displacement fields in the weak form of motion equation and transient thermal equation, respectively. Also, transformation method is used to impose their essential boundary conditions. Effects of waviness, volume fraction and distribution pattern of CNT, temperature of environment and direction of thermal gradient loads are investigated on the thermoelastic dynamic behavior of FG-CNTRC cylinders.

Pulse wave analysis system using wrist type oximeter for u-Health service (u-Health 서비스 지원을 위한 착용형 옥시미터를 이용한 맥파 분석 시스템)

  • Jung, Sang-Joong;Seo, Yong-Su;Chung, Wan-Young
    • Journal of Sensor Science and Technology
    • /
    • v.19 no.1
    • /
    • pp.17-24
    • /
    • 2010
  • This paper describes a real time reliable monitoring method and analysis system using wrist type oximeter for ubiquitous healthcare service based on IEEE 802.15.4 standard. Photoplethysmograph(PPG) is simple and cost effective technique to measure blood volume change. In order to obtain and monitor physiological body signals continuously, a small size and low power consumption wrist type oximeter is designed for the measurement of oxygen saturation of a patient unobtrusively. The measured data is transferred to a central PC or server computer by using wireless sensor nodes in wireless sensor network for storage and analysis purposes. LabVIEW server program is designed to monitor stress indicator from heart rate variability(HRV) and process the measured PPG to accelerated plethysmograph(APG) by appling second order derivatives in server PC. These experimental results demonstrate that APG can precisely describe the features of an individual's PPG and be used as estimation of vascular elasticity for blood circulation.

Evaluation Method I of the Small Current Breaking Performance for SF(sub)6-Blown High-Voltage Gas Circuit Breakers (초고압 $SF_6$ 가스차단기의 소전류 차단성능 해석기술 I)

  • 송기동;이병운;박경엽;박정후
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.50 no.7
    • /
    • pp.331-337
    • /
    • 2001
  • With the increasing reliability of analysis schemes and the dramatically increased calculating speed, the computer simulation has become and indispensable process to predict the interruption capacity of circuit breakers. Generally, circuit breakers have to possess both the small current and large current interruption abilities and the circuit breaker designers need to evaluate its capacities to save the time and the expense. The analysis of small current and the large current interruption performances have been considered separately because the phenomena occurring in a interrupter are quite different. To analyze the dielectric recovery after large current interruption many physical phenomena such as heat transfer, convection and arc radiation, the nozzle ablation, the ionization of high temperature SF(sub)6 gas, the electric and themagnetic forces and so forth mush be considered. However, in the analysis of small current interruption performance only the cold gas flow analysis needs to be carried out because the capacitive current is to small that the influence from the current can be neglected. In this paper, an empirical equation which is obtained from a series of tests to estimate the dielectric recovery strength has been applied to a real circuit breaker. The results of analysis have been compared with the test results and the reliability has been investigated.

  • PDF

Development of Optical Fiber Hydrogen Sensor Based on Polarization-Diversity Loop Configuration Using Pd-Coated Polarization-Maintaining Fiber (팔라듐 코팅된 편광 유지 광섬유를 이용한 편광 상이 배치 구조 기반 광섬유 수소 센서의 개발)

  • Noh, Tae-Kyu;Kim, Young-Ho;Lee, Yong-Wook
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.3
    • /
    • pp.1-6
    • /
    • 2013
  • In this study, we propose a fiber-optic hydrogen sensor using a polarization-diversity loop configuration composed of a polarization beam splitter, two quarter-wave plates, and a polarization-maintaining fiber coated with palladium whose thickness is ~400nm. One transmission dip of the output interference spectrum of the proposed sensor, chosen as a sensor indicator, was observed to spectrally shift with the increase of the hydrogen concentration, and the sensing indicator showed a wavelength shift of ~2.48nm at a hydrogen concentration of 4%. Except for a hydrogen concentration of 4%, the response time of the proposed sensor was measured as less than 12.5s and did not show significant dependence on the hydrogen concentration. In particular, the proposed fiber hydrogen sensor is more durable and highly resistant to external stress applied on a transverse axis of an optical fiber, compared with other hydrogen sensors based on side-polished fibers or fiber gratings.

Development of Evaluation System for Fatigue Strength on the Connection Between Longitudinals and Transverse Web (유조선 종통보강재와 횡늑골 연결부의 피로강도 평가용 자동화 시스템 개발)

  • Hong, Ki-Sup;Kim, Sung-Chan;Ahn, Jae-Wook;Kim, Seong-Ki
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.46 no.5
    • /
    • pp.510-519
    • /
    • 2009
  • Ship structure is composed of the welded mixture members which are plate and stiffeners. Ship structure is also influenced by variable loadings such as wave and inertia load. There have been several fatigue damage problems on the connection between longitudinal and transverse web due to wide usage of high tensile steel and adoption of wide web space to improve shipbuilding productivity. It is impossible to estimate the fatigue lives for all connection details through refined fatigue analysis. It is necessary to use the simplified approach for the fatigue life estimation of the connection details. PLUS analysis, which is suggested by the classification society, is one of the simplified approaches and is widely adopted to get fatigue lives for the connection details along whole cargo hold area. However, ship building yards still have difficulties to get fatigue lives due to large amount of calculation and time even if this approach reduce the time and amount of calculation. This paper treats the computing system developed to reduce efforts of estimating the fatigue lives. The influence factors of mean shear stress and local dynamic pressure are easily calculated and fatigue lives for all hot spots can be estimated automatically by the developed computing system. It is possible to reduce computing time and efforts to get the fatigue lives for the connection details between longitudinals and transverse webs along the ship. This system was applied to get fatigue lives on the connection details of a VLCC and verified the availability.

A Study on Frequency Domain Fatigue Damage Prediction Models for Wide-Banded Bimodal Stress Range Spectra (광대역 이봉형 응력 범위 스펙트럼에 대한 주파수 영역 피로 손상 평가 모델에 대한 연구)

  • Park, Jun-Bum;Kang, Chan-Hoe;Kim, Kyung-Su;Choung, Joon-Mo;Yoo, Chang-Hyuk
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.48 no.4
    • /
    • pp.299-307
    • /
    • 2011
  • The offshore plants such as FPSO are subjected to combination loading of environmental conditions (swell, wave, wind and current). Therefore the fatigue damage is occurred in the operation time because the units encounter the environmental phenomena and the structural configurations are complicated. This paper is a research for frequency domain fatigue analysis of wide-band random loading focused on accuracy of fatigue damage estimation regarding the proposed methods. We selected ideal bi-modal spectrum. And comparison between time-domain fatigue analysis and frequency-domain fatigue analyses are conducted through the fatigue damage ratio. Fatigue damage ratios according to Vanmarcke's bandwidth parameter are founded for wide-band. Considering safety, we recommend that Jiao-Moan and Tovo-Benasciutti methods are optimal way at the fatigue design for wide-band response. But, it is important that these methods based on frequency-domain unstably change the accuracy according to the material parameter of S-N curve. This study will be background and guidance for the new frequency-domain fatigue analysis development in the future.

Identification of Impact Damage in Smart Composite Laminates Using PVDF Sensor Signals (고분자 압전센서 신호를 이용한 스마트 복합적층판의 충격 손상 규명)

  • Lee, Hong-Young;Kim, In-Gul;Park, Chan-Yik
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.7
    • /
    • pp.51-59
    • /
    • 2004
  • An experimental procedure to identify failure modes of impact damage using sensor signals and to analyze their general features is examined. A series of low-velocity impact tests from low energy to damage-induced high energy were performed on the instrumented drop weight impact tester to monitor the stress wave signals due to failure modes such as matrix cracking, delamination, and fiber breakage. The wavelet transform(WT) and Short Time Fourier Transform(STFT) are used to decompose the piezoelectric sensor signals in this study. The extent of the damage in each case was examined by means of a conventional ultrasonic C-scan. The PVDF sensor signals are shown to carry important information regarding the nature of the impact process that can be extracted from the careful signal processing and analysis.