• Title/Summary/Keyword: stress-strain response

Search Result 500, Processing Time 0.029 seconds

Differential expression and in situ localization of a pepper defensin (CADEFl) gene in response to pathogen infection, abiotic elicitors and environmental stresses in Capsium annuum

  • Do, Hyun-Mee;Lee, Sung-Chul;Jung, Ho-Won;Hwang, Byung-Kook
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.78.2-79
    • /
    • 2003
  • Pepper defensin ( CADEFl) clone was isolated from cDNA library constructed from pepper leaves infected with avirulent strain Bv5-4a of Xanthomonu campestris pv. vesicatoria. The deduced amino acid sequence of CADEFl is 82-64% identical to that of other plant defensins. Putative protein encoded by CADEFl gene consists of 78 amino acids and 8 conserved cysteine residues to form four structure-stabilizing disulfide bridges. Transcription of the CADEF1 gene was earlier and stronger induced by X campestris pv. vesicatoria infection in the incompatible than in the compatible interaction. CADEF1 mRNA was constitutively expressed in stem, root and green fruit of pepper. Transcripts of CADEFl gene drastically accumulated in pepper leaf tissues treated With Salicylic acid (SA), methyl jasmonate (MeJA), abscisic acid (ABA), hydrogen Peroxide (H$_2$O$_2$), benzothiadiazole (BTH) and DL-${\beta}$-amino-n-butyric acid (BABA). In situ hybridization results revealed that CADEF1 mRNA was localized in the phloem areas of vascular bundles in leaf tissues treated with exogenous SA, MeJA and ABA. Strong accumulation of CADEF1 mRNA occurred in pepper leaves in response to wounding, high salinity and drought stress. These results suggest that bacterial pathogen infection, abiotic elicitors and some environmental stresses may play a significant role in signal transduction pathway for CADEF1 gene expression.

  • PDF

Thermal Property Analysis of 40 mm Long Hollow Cylinders Though Measurements and Analysis of Transient Temperatures (온도 측정과 분석을 통한 40 mm 장축공동실린더의 열적특성 고찰)

  • Shin Nae-Ho;Chung Dong-Yoon;Oh Myoung-Ho;Yoo Sam-Hyeon;Nam Seok-Ryun
    • Tribology and Lubricants
    • /
    • v.22 no.4
    • /
    • pp.190-195
    • /
    • 2006
  • A simple and effective analysis method is presented for gaining a complete transient temperatures on the internal and external surfaces of a 40 mm gun tube subjected to a series of rapid firings. Two series of temperature data for both Hs and As were measured by using two rapid response k-type surface thermocouples near the firing origin and the muzzle. With other available temperature data, patterns of temperature variations of the gun tube as a function of time variable were driven through complete evaluations of the data. It is found that overall temperature gradients which increase exponentially toward saturation temperature, actually consist of a series of linear temperature gradients corresponding to the firing sequences. Under the similar firing sequences, patterns of temperature variations fur both the surface temperatures near the chamber and those near the muzzle were found to have linear temperature gradients with different values and the same response frequencies, i.e. they had peaks and lows in temperatures at the same time. The resultant complete temperature data can be used as the fundamental bases for analysis of thermoelastic properties of the materials such as thermal strain and stress, and f3r the prediction of cannon tube life-time through calculation of wear rate.

Modeling of cyclic joint shear deformation contributions in RC beam-column connections to overall frame behavior

  • Shin, Myoungsu;LaFave, James M.
    • Structural Engineering and Mechanics
    • /
    • v.18 no.5
    • /
    • pp.645-669
    • /
    • 2004
  • In seismic analysis of moment-resisting frames, beam-column connections are often modeled with rigid joint zones. However, it has been demonstrated that, in ductile reinforced concrete (RC) moment-resisting frames designed based on current codes (to say nothing of older non-ductile frames), the joint zones are in fact not rigid, but rather undergo significant shear deformations that contribute greatly to global drift. Therefore, the "rigid joint" assumption may result in misinterpretation of the global performance characteristics of frames and could consequently lead to miscalculation of strength and ductility demands on constituent frame members. The primary objective of this paper is to propose a rational method for estimating the hysteretic joint shear behavior of RC connections and for incorporating this behavior into frame analysis. The authors tested four RC edge beam-column-slab connection subassemblies subjected to earthquake-type lateral loading; hysteretic joint shear behavior is investigated based on these tests and other laboratory tests reported in the literature. An analytical scheme employing the modified compression field theory (MCFT) is developed to approximate joint shear stress vs. joint shear strain response. A connection model capable of explicitly considering hysteretic joint shear behavior is then formulated for nonlinear structural analysis. In the model, a joint is represented by rigid elements located along the joint edges and nonlinear rotational springs embedded in one of the four hinges linking adjacent rigid elements. The connection model is able to well represent the experimental hysteretic joint shear behavior and overall load-displacement response of connection subassemblies.

Performance evaluation of RC piers repaired by CFRP (CFRP로 보수된 RC 교각의 내진성능 평가)

  • Lee, Do-Hyung;Jeon, Jeong-Moon;Cho, Kyu-Sang;Kim, Yong-Il
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.85-88
    • /
    • 2008
  • Performance evaluation of RC bridge piers repaired by CFRP has been investigated. For this purpose, simplified CFRP stress-strain relationship has been proposed and use is made of inelastic time-dependent element developed by authors. Static time-history analysis has been carried out for a RC bridge pier repaired with CFRP. Analytical predictions shows a relatively good correlation with experimental results. In addition, in case of dynamic time-history analysis, effect of the CFRP repair intervention on shear has been evaluated. Comparative analysis reveals that a repaired member produces increased characteristics due to the repair intervention and may affect the overall response of a whole structure. Moreover, effect of shear significantly affect strength, stiffness and displacement response of the pier. In all, It is believed that the present analytical model and scheme enable a healthy evaluation of strength, stiffness and displacement capacities of a RC bridge pier being damaged and repaired.

  • PDF

Experimental and numerical investigation on in-plane behaviour of hollow concrete block masonry panels

  • Murthy, A. Rama Chandra;Ganapathi, S. Chitra;Iyer, Nagesh R.;Lakshmanan, N.;Bhagavan, N.G.
    • Computers and Concrete
    • /
    • v.10 no.1
    • /
    • pp.1-18
    • /
    • 2012
  • This paper presents the details of studies conducted on hollow concrete block masonry (HCBM) units and wall panels. This study includes, compressive strength of unit block, ungrouted and grouted HCB prisms, flexural strength evaluation, testing of HCBM panels with and without opening. Non-linear finite element (FE) analysis of HCBM panels with and without opening has been carried out by simulating the actual test conditions. Constant vertical load is applied on the top of the wall panel and then lateral load is applied in incremental manner. The in-plane deformation is recorded under each incremental lateral load. Displacement ductility factors and response reduction factors have been evaluated based on experimental results. From the study, it is observed that fully grouted and partially reinforced HCBM panel without opening performed well compared to other types of wall panels in lateral load resistance and displacement ductility. In all the wall panels, shear cracks originated at loading point and moved towards the compression toe of the wall. The force reduction factor of a wall panel with opening is much less when compared with fully reinforced wall panel with no opening. The displacement values obtained by non-linear FE analysis are found to be in good agreement with the corresponding experimental values. The influence of mortar joint has been included in the stress-strain behaviour as a monolith with HCBM and not considered separately. The derived response reduction factors will be useful for the design of reinforced HCBM wall panels subjected to lateral forces generated due to earthquakes.

Evaluation of Seismic Response of Masonry Walls Strengthened with Steel-bar Truss Systems by Non-linear Finite Element Analysis (비선형 유한요소 해석에 의한 강봉 트러스 시스템으로 보강된 조적벽체의 내진거동 평가)

  • Hwang, Seung-Hyeon;Yang, Keun-Hyeok;Kim, Sang-Hee;Lim, Jin-Sun;Im, Chae-Rim
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.4
    • /
    • pp.20-27
    • /
    • 2021
  • The present study presents a nonlinear finite element analysis (FEA) approach using the general program of Abaqus to evaluate the seismic response of unreinforced masonry walls strengthened with the steel bar truss system developed in the previous investigation. For finite element models of masonry walls, the concrete damaged plasticity (CDP) and meso-scale methods were considered on the basis of the stress-strain relationships under compression and tension and shear friction-slip relationship of masonry prisms proposed by Yang et al. in order to formulate the interface characteristics between brick elements and mortars. The predictions obtained from the FEA approach were compared with test results under different design parameters; as a result, a good agreement could be observed with respect to the crack propagation, failure mode, rocking strength, peak strength, and lateral load-displacement relationship of masonry walls. Thus, it can be stated that the proposed FEA approach shows a good potential for designing the seismic strengthening of masonry walls.

The effectiveness of position of coupled beam with respect to the floor level

  • Yasser Abdal Shafey, Gamal;Lamiaa K., Idriss
    • Coupled systems mechanics
    • /
    • v.11 no.6
    • /
    • pp.557-586
    • /
    • 2022
  • In spite of extensive testing of the individual shear wall and the coupling beam (CB), numerical and experimental researches on the seismic behavior of CSW are insufficient. As far as we know, no previous research has investigated the affectations of position of CB regarding to the slab level (SL). So, the investigation aims to enhance an overarching framework to examine the consequence of connection positions between CB and SL. And, three cases have been created. One is composed of the floor slab (FS) at the top of the CB (FSTCB); the second is created with the FS within the panel depth (FSWCB), and the third is employed with the FS at the bottom of the CB (FSLCB). And, FEA is used to demonstrate the consequences of various CB positions with regard to the SL. Furthermore, the main measurements of structure response that have been investigated are deformation, shear, and moment in a coupled beam. Additionally, wall elements are used to simulate CB. In addition, ABAQUS software was used to figure out the strain distribution, shear stress for four stories to further understand the implications of slab position cases on the coupled beam rigidity. Overall, the findings show that the position of the rigid linkage among the CB and the FS can affect the behavior of the structures under seismic loads. For all structural heights (4, 8, 12 stories), the straining actions in FSWCB and FSLCB were less than those in FSTCB. And, the increases in displacement time history response for FSWCB are around 16.1-81.8%, 31.4-34.7%, and 17.5% of FSTCB.

Genome-Based Insights into the Thermotolerant Adaptations of Neobacillus endophyticus BRMEA1T

  • Lingmin Jiang;Ho Le Han;Yuxin Peng;Doeun Jeon;Donghyun Cho;Cha Young Kim;Jiyoung Lee
    • Research in Plant Disease
    • /
    • v.29 no.3
    • /
    • pp.321-329
    • /
    • 2023
  • The bacterium Neobacillus endophyticus BRMEA1T, isolated from the medicinal plant Selaginella involvens, known as its thermotolerant can grow at 50℃. To explore the genetic basis for its heat tolerance response and its potential for producing valuable natural compounds, the genomes of two thermotolerant and four mesophilic strains in the genus Neobacillus were analyzed using a bioinformatic software platform. The whole genome was annotated using RAST SEED and OrthVenn2, with a focus on identifying potential heattolerance-related genes. N. endophyticus BRMEA1T was found to possess more stress response genes compared to other mesophilic members of the genus, and it was the only strain that had genes for the synthesis of osmoregulated periplasmic glucans. This study sheds light on the potential value of N. endophyticus BRMEA1T, as it reveals the mechanism of heat resistance and the application of secondary metabolites produced by this bacterium through whole-genome sequencing and comparative analysis.

Sensing the Stress: the Role of the Stress-activated p38/Hog1 MAPK Signalling Pathway in Human Pathogenic Fungus Cryptococcus neoformans

  • Bahn, Yong-Sun;Heitman, Joseph
    • Proceedings of the Microbiological Society of Korea Conference
    • /
    • 2007.05a
    • /
    • pp.120-122
    • /
    • 2007
  • All living organisms use numerous signal-transduction pathways to sense and respond to their environments and thereby survive and proliferate in a range of biological niches. Molecular dissection of these signalling networks has increased our understanding of these communication processes and provides a platform for therapeutic intervention when these pathways malfunction in disease states, including infection. Owing to the expanding availability of sequenced genomes, a wealth of genetic and molecular tools and the conservation of signalling networks, members of the fungal kingdom serve as excellent model systems for more complex, multicellular organisms. Here, we employed Cryptococcus neoformans as a model system to understand how fungal-signalling circuits operate at the molecular level to sense and respond to a plethora of environmental stresses, including osmoticshock, UV, high temperature, oxidative stress and toxic drugs/metabolites. The stress-activated p38/Hog1 MAPK pathway is structurally conserved in many organisms as diverse as yeast and mammals, but its regulation is uniquely specialized in a majority of clinical Cryptococcus neoformans serotype A and D strains to control differentiation and virulence factor regulation. C. neoformans Hog1 MAPK is controlled by Pbs2 MAPK kinase (MAPKK). The Pbs2-Hog1 MAPK cascade is controlled by the fungal "two-component" system that is composed of a response regulator, Ssk1, and multiple sensor kinases, including two-component.like (Tco) 1 and Tco2. Tco1 and Tco2 play shared and distinct roles in stress responses and drug sensitivity through the Hog1 MAPK system. Furthermore, each sensor kinase mediates unique cellular functions for virulence and morphological differentiation. We also identified and characterized the Ssk2 MAPKKK upstream of the MAPKK Pbs2 and the MAPK Hog1 in C. neoformans. The SSK2 gene was identified as a potential component responsible for differential Hog1 regulation between the serotype D sibling f1 strains B3501 and B3502 through comparative analysis of their meiotic map with the meiotic segregation of Hog1-dependent sensitivity to the fungicide fludioxonil. Ssk2 is the only polymorphic component in the Hog1 MAPK module, including two coding sequence changes between the SSK2 alleles in B3501 and B3502 strains. To further support this finding, the SSK2 allele exchange completely swapped Hog1-related phenotypes between B3501 and B3502 strains. In the serotype A strain H99, disruption of the SSK2 gene dramatically enhanced capsule biosynthesis and mating efficiency, similar to pbs2 and hog1 mutations. Furthermore, ssk2, pbs2, and hog1 mutants are all hypersensitive to a variety of stresses and completely resistant to fludioxonil. Taken together, these findings indicate that Ssk2 is the critical interface protein connecting the two-component system and the Pbs2-Hog1 pathway in C. neoformans.

  • PDF

Effect of the restorative technique on load-bearing capacity, cusp deflection, and stress distribution of endodontically-treated premolars with MOD restoration

  • da Rocha, Daniel Maranha;Tribst, Joao Paulo Mendes;Ausiello, Pietro;Dal Piva, Amanda Maria de Oliveira;Rocha, Milena Cerqueira da;Di Nicolo, Rebeca;Borges, Alexandre Luiz Souto
    • Restorative Dentistry and Endodontics
    • /
    • v.44 no.3
    • /
    • pp.33.1-33.12
    • /
    • 2019
  • Objectives: To evaluate the influence of the restorative technique on the mechanical response of endodontically-treated upper premolars with mesio-occluso-distal (MOD) cavity. Materials and Methods: Forty-eight premolars received MOD preparation (4 groups, n = 12) with different restorative techniques: glass ionomer cement + composite resin (the GIC group), a metallic post + composite resin (the MP group), a fiberglass post + composite resin (the FGP group), or no endodontic treatment + restoration with composite resin (the CR group). Cusp strain and load-bearing capacity were evaluated. One-way analysis of variance and the Tukey test were used with ${\alpha}=5%$. Finite element analysis (FEA) was used to calculate displacement and tensile stress for the teeth and restorations. Results: MP showed the highest cusp (p = 0.027) deflection ($24.28{\pm}5.09{\mu}m/{\mu}m$), followed by FGP ($20.61{\pm}5.05{\mu}m/{\mu}m$), CR ($17.62{\pm}7.00{\mu}m/{\mu}m$), and GIC ($17.62{\pm}7.00{\mu}m/{\mu}m$). For load-bearing, CR ($38.89{\pm}3.24N$) showed the highest, followed by GIC ($37.51{\pm}6.69N$), FGP ($29.80{\pm}10.03N$), and MP ($18.41{\pm}4.15N$) (p = 0.001) value. FEA showed similar behavior in the restorations in all groups, while MP showed the highest stress concentration in the tooth and post. Conclusions: There is no mechanical advantage in using intraradicular posts for endodontically-treated premolars requiring MOD restoration. Filling the pulp chamber with GIC and restoring the tooth with only CR showed the most promising results for cusp deflection, failure load, and stress distribution.