• Title/Summary/Keyword: stress-strain response

Search Result 498, Processing Time 0.026 seconds

Rate-sensitive analysis of framed structures part II: implementation and application to steel and R/C frames

  • Fang, Q.;Izzuddin, B.A.
    • Structural Engineering and Mechanics
    • /
    • v.5 no.3
    • /
    • pp.239-256
    • /
    • 1997
  • The companion paper presents a new three-parameter model for the uniaxial rate-sensitive material response, which is based on a bilinear static stress-strain relationship with kinematic strain-hardening. This paper extends the proposed model to trilinear static stress-strain relationships for steel and concrete, and discusses the implementation of the new models within an incremental-iterative solution procedure. For steel, the three-parameter rate-function is employed with a trilinear static stress-strain relationship, which allows the utilisation of different levels of rate-sensitivity for the plastic plateau and strain-hardening ranges. For concrete, on the other hand, two trilinear stress-strain relationships are used for tension and compression, where rate-sensitivity is accounted for in the strain-softening range. Both models have been implemented within the nonlinear analysis program ADAPTIC, which is used herein to provide verification for the models, and to demonstrate their applicability to the rate-sensitive analysis of steel and reinforced concrete structures.

Effect of hysteretic constitutive models on elasto-plastic seismic performance evaluation of steel arch bridges

  • Wang, Tong;Xie, Xu;Shen, Chi;Tang, Zhanzhan
    • Earthquakes and Structures
    • /
    • v.10 no.5
    • /
    • pp.1089-1109
    • /
    • 2016
  • Modified two-surface model (M2SM) is one of the steel elasto-plastic hysteretic constitutive models that consider both analysis accuracy and efficiency. However, when M2SM is used for complex strain history, sometimes the results are irrational due to the limitation of stress-strain path judgment. In this paper, the defect of M2SM was re-modified by improving the judgment of stress-strain paths. The accuracy and applicability of the improved method were verified on both material and structural level. Based on this improvement, the nonlinear time-history analysis was carried out for a deck-through steel arch bridge with a 200 m-long span under the ground motions of Chi-Chi earthquake and Niigata earthquake. In the analysis, we compared the results obtained by hysteretic constitutive models of improved two-surface model (I2SM) presented in this paper, M2SM and the bilinear kinematic hardening model (BKHM). Results show that, although the analysis precision of displacement response of different steel hysteretic models differs little from each other, the stress-strain responses of the structure are affected by steel hysteretic models apparently. The difference between the stress-strain responses obtained by I2SM and M2SM cannot be neglected. In significantly damaged areas, BKHM gives smaller stress result and obviously different strain response compared with I2SM and M2SM, and tends to overestimate the effect of hysteretic energy dissipation. Moreover, at some position with severe damage, BKHM may underestimate the size of seismic damaged areas. Different steel hysteretic models also have influences on structural damage evaluation results based on deformation behavior and low cycle fatigue, and may lead to completely different judgment of failure, especially in severely damaged areas.

Material Model and Thermal Response Analysis of Concrete at Elevated Temperatures (고온에서의 콘크리트 재료모델과 열거동해석)

  • 강석원;홍성걸
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.3
    • /
    • pp.268-276
    • /
    • 2001
  • A numerical model for the thermal response analysis of concrete structures is suggested. The model includes the stress-strain relationship, constitutive relationship, and multiaxial failure criteria at elevated temperature conditions. Modified Saenz's model was used to describe the stress-strain relationship at high temperatures. Concrete subjected to elevated temperatures undergoes rapid strain increase and dimensional instability. In order to explain those changes in mechanical properties, a constitutive model of concrete subjected to elevated temperature is proposed. The model consists of four strain components; free thermal creep strain, stress-induced (mechanical) strain, thermal creep strain, and transient strain due to moisture effects. The failure model employs modified Drucker-Prager model in order to describe the temperature dependent multiaxial failure criteria. Some numerical analyses are performed and compared with the experimental results to verify the proposed model. According to the comparison, the suggested material model gives reliable analytical results.

Dynamic stress response in the nanocomposite concrete pipes with internal fluid under the ground motion load

  • Keshtegar, Behrooz;Tabatabaei, Javad;Kolahchi, Reza;Trung, Nguyen-Thoi
    • Advances in concrete construction
    • /
    • v.9 no.3
    • /
    • pp.327-335
    • /
    • 2020
  • Concrete pipes are considered important structures playing integral role in spread of cities besides transportation of gas as well as oil for far distances. Further, concrete structures under seismic load, show behaviors which require to be investigated and improved. Therefore, present research concerns dynamic stress and strain alongside deflection assessment of a concrete pipe carrying water-based nanofluid subjected to seismic loads. This pipe placed in soil is modeled through spring as well as damper. Navier-Stokes equation is utilized in order to gain force created via fluid and, moreover, mixture rule is applied to regard the influences related to nanoparticles. So as to model the structure mathematically, higher order refined shear deformation theory is exercised and with respect to energy method, the motion equations are obtained eventually. The obtained motion equations will be solved with Galerkin and Newmark procedures and consequently, the concrete pipe's dynamic stress, strain as well as deflection can be evaluated. Further, various parameters containing volume percent of nanoparticles, internal fluid, soil foundation, damping and length to diameter proportion of the pipe and their influences upon dynamic stress and strain besides displacement will be analyzed. According to conclusions, increase in volume percent of nanoparticles leads to decrease in dynamic stress, strain as well as displacement of structure.

Integration of Stress-Strain Rate Equations of CASM

  • Koh, Tae-Hoon
    • International Journal of Railway
    • /
    • v.3 no.4
    • /
    • pp.117-122
    • /
    • 2010
  • In transportation geotechnical engineering, stress-strain behavior of earth structures has been analyzed by numerical simulations with the implemented plasticity constitutive model. It is a fact that many advanced plasticity constitutive models on predicting the mechanical behavior of soils have been developed as well as experimental research works for geotechnical applications in the past decades. In this study, recently developed, a unified constitutive model for both clay and sand, which is referred to as CASM (clay and sand model), was compared with a classical constitutive model, Cam-Clay model. Moreover, integration methods of stress-strain rate equations using CASM were presented for simulation of undrained and drained triaxial compression tests. As a conclusion, it was observed that semi-implicit integration method has more improved accuracy of capturing strain rate response to applied stress than explicit integration by the multiple correction and iteration.

  • PDF

Stress-Strain Response of Polymer-Impregnated Concrete in Uniaxial and Biaxial Compression (일축 및 이축압축을 받는 폴리머침투콘크리트의 응력-변형률 특성)

  • 변근주;이상민;노병철;이용진
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1991.10a
    • /
    • pp.93-98
    • /
    • 1991
  • Polymer-Impregnated Concrete(PIC) can be considered composite material of concrete and polymer and has superior properties compared to conventional cement concrete, such as strength, stiffness, toughness, durability, water-proofing, chemical resistance. However, so far, the usage of PIC has been limited to repairing materials and non-structural applications, due to the lack of the design criteria and the analytical model to determine structural behavior. The objective of this study is to define the stress-strain response and strength characteristics of PIC in uniaxial and various biaxial compressive loading. On the bases of experimental results, general stress-strain relation, biaxial failure envelope and strength evaluation formular of PIC made with normal aggregate and methylmethacrylate(MMA) are proposed.

  • PDF

Targeting the Osmotic Stress Response for Strain Improvement of an Industrial Producer of Secondary Metabolites

  • Godinez, Octavio;Dyson, Paul;del Sol, Ricardo;Barrios-Gonzalez, Javier;Millan-Pacheco, Cesar;Mejia, Armando
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.11
    • /
    • pp.1787-1795
    • /
    • 2015
  • The transition from primary to secondary metabolism in antibiotic-producing Streptomyces correlates with expression of genes involved in stress responses. Consequently, regulatory pathways that regulate specific stress responses are potential targets to manipulate to increase antibiotic titers. In this study, genes encoding key proteins involved in regulation of the osmotic stress response in Streptomyces avermitilis, the industrial producer of avermectins, are investigated as targets. Disruption of either osaBSa, encoding a response regulator protein, or osaCSa, encoding a multidomain regulator of the alternative sigma factor SigB, led to increased production of both oligomycin, by up to 200%, and avermectin, by up to 37%. The mutations also conditionally affected morphological development; under osmotic stress, the mutants were unable to erect an aerial mycelium. In addition, we demonstrate the delivery of DNA into a streptomycete using biolistics. The data reveal that information on stress regulatory responses can be integrated in rational strain improvement to improve yields of bioactive secondary metabolites.

The Free Edge Stress Singularity At An Interface of Bilinear Material Structure (탄성 선형 경화 재료로 구성된 복합 구조물의 자유 경계면에서 나타나는 응력특이도)

  • 정철섭
    • Computational Structural Engineering
    • /
    • v.10 no.3
    • /
    • pp.185-193
    • /
    • 1997
  • The order of the stress singularity that occurs at the termination of an interface between materials exhibiting bilinear stress-strain response under plane strain conditions has been calculated, The governing equation of elasticity together with traction-free boundary condition and interface continuity condition defines a two-point boundary value problem. The stress components near the free edge are assumed to be proportional to r/sup s-1/, with solutions existing only for certain values of s. Finding these values entails the solution of an eigenvalue problem. Because it has been impossible to integrate the differential equations analytically, the integration has been performed numerically with a shooting method coupled with a Newton improvement scheme.

  • PDF

Cracking behavior of RC shear walls subject to cyclic loadings

  • Kwak, Hyo-Gyoung;Kim, Do-Yeon
    • Computers and Concrete
    • /
    • v.1 no.1
    • /
    • pp.77-98
    • /
    • 2004
  • This paper presents a numerical model for simulating the nonlinear response of reinforced concrete (RC) shear walls subject to cyclic loadings. The material behavior of cracked concrete is described by an orthotropic constitutive relation with tension-stiffening and compression softening effects defining equivalent uniaxial stress-strain relation in the axes of orthotropy. Especially in making analytical predictions for inelastic behaviors of RC walls under reversed cyclic loading, some influencing factors inducing the material nonlinearities have been considered. A simple hysteretic stress-strain relation of concrete, which crosses the tension-compression region, is defined. Modification of the hysteretic stress-strain relation of steel is also introduced to reflect a pinching effect depending on the shear span ratio and to represent an average stress distribution in a cracked RC element, respectively. To assess the applicability of the constitutive model for RC element, analytical results are compared with idealized shear panel and shear wall test results under monotonic and cyclic shear loadings.

Shear response estimate for squat reinforced concrete walls via a single panel model

  • Massone, Leonardo M.;Ulloa, Marco A.
    • Earthquakes and Structures
    • /
    • v.7 no.5
    • /
    • pp.647-665
    • /
    • 2014
  • Squat reinforced concrete walls require enough shear strength in order to promote flexural yielding, which creates the need for designers of an accurate method for strength prediction. In many cases, especially for existing buildings, strength estimates might be insufficient when more accurate analyses are needed, such as pushover analysis. In this case, estimates of load versus displacement are required for building modeling. A model is developed that predicts the shear load versus shear deformation of squat reinforced concrete walls by means of a panel formulation. In order to provide a simple, design-oriented tool, the formulation considers the wall as a single element, which presents an average strain and stress field for the entire wall. Simple material constitutive laws for concrete and steel are used. The developed models can be divided into two categories: (i) rotating-angle and (ii) fixed-angle models. In the first case, the principal stress/strain direction rotates for each drift increment. This situation is addressed by prescribing the average normal strain of the panel. The formation of a crack, which can be interpreted as a fixed principal strain direction is imposed on the second formulation via calibration of the principal stress/strain direction obtained from the rotating-angle model at a cracking stage. Two alternatives are selected for the cracking point: fcr and 0.5fcr (post-peak). In terms of shear capacity, the model results are compared with an experimental database indicating that the fixed-angle models yield good results. The overall response (load-displacement) is also reasonable well predicted for specimens with diagonal compression failure.