• 제목/요약/키워드: stress-specific responsive gene

검색결과 19건 처리시간 0.018초

Identification of Fruit-specific cDNAs in a Ripened Inodorus Melon Using Differential Screening and the Characterization of on Abscisic Acid Responsive Gene Homologue

  • Hong, Se-Ho;Kim, In-Jung;Chung, Won-Il
    • Journal of Plant Biotechnology
    • /
    • 제4권1호
    • /
    • pp.7-15
    • /
    • 2002
  • Eight cDNAs corresponding to fruit-specific genes were isolated from ripened melon through differential screening. Sequence comparison indicated that six of these cDNAs encoded proteins were previously characterized into aminocyclopropane-1-carboxylate (ACC) oxidase, abscisic acid, stress and ripening inducible (ASR) gene, RINC-H2 zinc finger protein, pyruvate decarboxylase, or polyubiquitin. RFS2 and RFS5 were the same clone encoding polyubiquitin. The other cDNAs showed no significant homology with known protein sequences. The ASR homologue (Asr1) gene was further characterized on the cDNA and genomic structure. The deduced amino acid sequence had similar characteristics to other plant ASR. The Asr1 genomic DNA consisted of 2 exons and 1 intron, which is similar to the structure of other plants ASR genes. The promoter region of the Asr1 gene contained several putative functional cis-elements such as an abscisic acid responsive element (ABRE), an ethylene responsive element (ERE), a C-box or DPBf-1 and 2, Myb binding sites, a low temperature responsive element (LTRE) and a metal responsive element (MRE). The findings imply that these elements may play important roles in the response to plant hormones and environmental stresses in the process of fruit development. The results of this study suggest that the expressions of fruit specific and ripening-related cDNAs are closely associated with the stress response.

Expression of dehydration responsive element-binding protein-3 (DREB3) under different abiotic stresses in tomato

  • Islam, Mohammad Saiful;Wang, Myeong-Hyeon
    • BMB Reports
    • /
    • 제42권9호
    • /
    • pp.611-616
    • /
    • 2009
  • We investigated the expression pattern of dehydration responsive element-binding protein-3 in tomato under different abiotic stresses. Full length LeDREB3 cDNA was isolated from tomato plant, followed by phylogenetic analysis based on deduced amino acid sequences that revealed significant sequence similarity to DREB proteins belonging to diverse families of plant species. Southern blot analysis showed duplicate copies of LeDREB3 in the tomato genome while organ-specific expression profiling indicated constitutive expression of LeDREB3 in all tested organs, which was particularly strong in flower. LeDREB3 expression was significantly induced by Nacl, drought, low temperature and $H_2O_2$. Moreover, LeDREB3 was slightly regulated by treatment with ABA and MV. These observations suggest that the LeDREB3 gene may be involved in the response of the tomato plant to stress.

Arabidopsis Transcription Factor ANAC032 Enhances Salinity and Drought Tolerance

  • Netty Ermawati;Sang Gon Kim;Joon-Yung Cha;Daeyoung Son
    • 한국초지조사료학회지
    • /
    • 제43권1호
    • /
    • pp.42-49
    • /
    • 2023
  • The plant-specific NAC transcription factors control various biological processes, including plant development and stress responses. We have isolated an ANAC032 gene, one of the NAC transcription factor family, which was highly activated by multi-abiotic stresses, including high salt and drought in Arabidopsis. Here, we generated transgenic plants constitutively expressing ANAC032 and its knockout to identify the functional roles of ANAC032 in Arabidopsis under abiotic stress responses. The ANAC032-overexpressing plants showed enhanced tolerance to salinity and drought stresses. The anac032 knockout mutants were observed no significant changes under the high salt and drought conditions. We also monitored the expression of high salt and drought stress-responsive genes in the ANAC032 transgenic plants and anac032 mutant. The ANAC032 overexpression upregulated the expression of stress-responsive genes, RD29A and ERD10, under the stresses. Thus, our data identify that transcription factor ANAC032 plays as an enhancer for salinity and drought tolerance through the upregulation of stress-responsive genes and provides useful genetic traits for generating multi-abiotic stress-tolerant forage crops.

Platform of Hot Pepper Stress Genomics: Indentification of Stress Inducible Genes in Hot Pepper (Capsicum annuum L.) Using cDNA Microarray Analysis

  • Chung, Eun-Jo;Lee, Sanghyeob;Park, Doil
    • 한국식물병리학회:학술대회논문집
    • /
    • 한국식물병리학회 2003년도 정기총회 및 추계학술발표회
    • /
    • pp.81.1-81
    • /
    • 2003
  • Although plants have evolved to possess various defense mechanisms from local biotic and abiotic stressors, most of yield loss is caused by theses stressors. Recent studies have revealed that several different stress responsive reactions are inter-networking. Therefore, the identification and dissection of stress responsive genes is an essential and first step towards understanding of the global defense mechanism in response to various stressors. For this purpose, we applied cDNA microarray analysis, because it has powerful ability to monitor the global gene expression in a specific situation. To date, more than 10,000 non-redundant genes were identified from seven different cDNA libraries and deposited in our EST database (http://plant.pdrs.re.kr/ks200201/pepper.html). For this study, we have built 5K cDNA microarray containing 4,685 unigene clones from three different cDNA libraries. Monitoring of gene expression profiles of hot pepper interactions with biotic stress, abiotic stresses and chemical treatments will be presented. Although this work shows expression profiling at the sub-genomic level, this could be a good starting point to understand the complexity of global defense mechanism in hot pepper.

  • PDF

Application of data fusion modeling for the prediction of auxin response elements in Zea mays for food security purposes

  • Nesrine Sghaier;Rayda Ben Ayed;Ahmed Rebai
    • Genomics & Informatics
    • /
    • 제20권4호
    • /
    • pp.45.1-45.7
    • /
    • 2022
  • Food security will be affected by climate change worldwide, particularly in the developing world, where the most important food products originate from plants. Plants are often exposed to environmental stresses that may affect their growth, development, yield, and food quality. Auxin is a hormone that plays a critical role in improving plants' tolerance of environmental conditions. Auxin controls the expression of many stress-responsive genes in plants by interacting with specific cis-regulatory elements called auxin-responsive elements (AuxREs). In this work, we performed an in silico prediction of AuxREs in promoters of five auxin-responsive genes in Zea mays. We applied a data fusion approach based on the combined use of Dempster-Shafer evidence theory and fuzzy sets. Auxin has a direct impact on cell membrane proteins. The short-term auxin response may be represented by the regulation of transmembrane gene expression. The detection of an AuxRE in the promoter of prolyl oligopeptidase (POP) in Z. mays and the 3-fold overexpression of this gene under auxin treatment for 30 min indicated the role of POP in maize auxin response. POP is regulated by auxin to perform stress adaptation. In addition, the detection of two AuxRE TGTCTC motifs in the upstream sequence of the bx1 gene suggests that bx1 can be regulated by auxin. Auxin may also be involved in the regulation of dehydration-responsive element-binding and some members of the protein kinase superfamily.

The Arabidopsis Phytocystatin AtCYS5 Enhances Seed Germination and Seedling Growth under Heat Stress Conditions

  • Song, Chieun;Kim, Taeyoon;Chung, Woo Sik;Lim, Chae Oh
    • Molecules and Cells
    • /
    • 제40권8호
    • /
    • pp.577-586
    • /
    • 2017
  • Phytocystatins (PhyCYSs) are plant-specific proteinaceous inhibitors that are implicated in protein turnover and stress responses. Here, we characterized a PhyCYS from Arabidopsis thaliana, which was designated AtCYS5. RT-qPCR analysis showed that the expression of AtCYS5 in germinating seeds was induced by heat stress (HS) and exogenous abscisic acid (ABA) treatment. Analysis of the expression of the ${\beta}-glucuronidase$ reporter gene under the control of the AtCYS5 promoter showed that AtCYS5 expression during seed germination was induced by HS and ABA. Constitutive overexpression of AtCYS5 driven by the cauliflower mosaic virus 35S promoter led to enhanced HS tolerance in transgenic Arabidopsis, which was characterized by higher fresh weight and root length compared to wild-type (WT) and knockout (cys5) plants grown under HS conditions. The HS tolerance of AtCYS5-overexpressing transgenic plants was associated with increased insensitivity to exogenous ABA during both seed germination and post-germination compared to WT and cys5. Although no HS elements were identified in the 5'-flanking region of AtCYS5, canonical ABA-responsive elements (ABREs) were detected. AtCYS5 was upregulated in ABAtreated protoplasts transiently co-expressing this gene and genes encoding bZIP ABRE-binding factors (ABFs and AREB3). In the absence of ABA, ABF1 and ABF3 directly bound to the ABREs in the AtCYS5 promoter, which activated the transcription of this gene in the presence of ABA. These results suggest that an ABA-dependent pathway plays a positive role in the HS-responsive expression of AtCYS5 during seed germination and post-germination growth.

알코올에 대한 Escherichia coli, Clostridium acetobutylicum, Saccharomyces cerevisiae의 반응 (Cellular Responses to Alcohol in Escherichia coli, Clostridium acetobutylicum, and Saccharomyces cerevisiae)

  • 박주용;홍천상;한지혜;강현우;정봉우;최기욱;민지호
    • Korean Chemical Engineering Research
    • /
    • 제49권1호
    • /
    • pp.105-108
    • /
    • 2011
  • 유가의 급등과 화석 연료에 의한 온난화 현상은 재생 가능한 대체 연료에 대한 필요성이 요구되었다. 수송용 바이오 연료를 비교하였을 때 에탄올보다 높은 알코올 경우 휘발유와 비슷한 장점을 갖는데 그 이유는 높은 에너지 밀도와 낮은 흡습성을 갖기 때문이다. 이러한 이유로 미생물의 발효는 지속적인 에너지를 얻을 수 있는 잠재적 생산자라 할 수 있다. 본 연구에서는 생물학적으로 생산되는 알코올 성분에 대하여 두 종의 세균과 한종의 효모인 Escherichia coli와 Clostridium acetobutylicum 그리고 Saccharomyces cerevisiae를 이용하여 바이오 알코올에 대한 세포 성장 정도와 함께 미생물내에 스트레스 반응 유전자들의 분석을 실시하였다. 분석한 알코올은 에탄올과 부탄올이며, 이들의 농도별 세균의 성장속도와 산화적 손상에 민감하게 반응하는 katG 유전자, 생물막 손상에 민감하게 반응하는 fabA 유전자, 단백질 손상에 민감하게 반응하는 grpE 유전자, 유전자 손상에 민감하게 반응하는 recA 유전자의 반응여부를 분석하였다. 그 결과, 에탄올과 부탄올 중 부탄올의 세포 독성이 더 높게 관찰되었으며, 부탄올의 경우 생물막 손상을 유발하는 세포내 독성효과를 지니고 있음을 확인하였다.

Toxicogenomic analysis of Effects of Bisphenol A on Japanese Medaka fish using high density-functional cDNA microarray

  • Jiho Min;Park, Kyeong-Seo;Hong, Han-Na;Gu, Man-Bock
    • 한국환경독성학회:학술대회논문집
    • /
    • 한국환경독성학회 2003년도 추계국제학술대회
    • /
    • pp.173-173
    • /
    • 2003
  • With the introduction of DNA microarrays, a high throughput analysis of gene expression is now possible as a replacement to the traditional time-consuming Southern-blot analysis. This cDNA microarray should be ahighly favored technology in the area of molecular toxicology or analysis of environmental stresses.In this study, therefore, we developed a novel cDNA microarray for analyzing stress-specific responses in japanese Medaka fish. In the design and fabrication of this stress specific functional cDNA microarray, 123 different genes in Medaka fish were selected from eighteen different stress responsive groups and spotted on a 25${\times}$75 mm glass surface. After exposure of the fish to bisphenol A which is the one of the well-known endocrine disrupting chemicals (EDCs), over 1 or 10 days, the responses of the DNA chip were found to show distinct expression patterns according to the mode of toxic actions from environmental toxicants. As a results, they showed specific gene expression pattern to bisphenol A, additionally, the chemical spesific biomarkers could be suggested based on the chip analysis data. Therefore, this chip can be used to monitor stress responses of unknown and/or known toxic chemicals using Medaka fish and may be used for the further development of biomarkers by utilizing the gene expression patterns for known contaminants.

  • PDF

A novel WD40 protein, BnSWD1, is involved in salt stress in Brassica napus

  • Lee, Sang-Hun;Lee, Jun-Hee;Paek, Kyung-Hee;Kwon, Suk-Yoon;Cho, Hye-Sun;Kim, Shin-Je;Park, Jeong-Mee
    • Plant Biotechnology Reports
    • /
    • 제4권2호
    • /
    • pp.165-172
    • /
    • 2010
  • Genes that are expressed early in specific response to high salinity conditions were isolated from rapeseed plant (Brassica napus L.) using an mRNA differential display method. Five PCR fragments (DD1.5) were isolated that were induced by, but showed different response kinetics to, 200 mM NaCl. Nucleotide sequence analysis and homology search revealed that the deduced amino sequences of three of the five cDNA fragments showed considerable similarity to those of ${\beta}$-mannosidase (DD1), tomato Pti-6 proteins (DD5), and the tobacco harpin-induced protein hin1 (DD4), respectively. In contrast, the remaining clones, DD3 and DD2, did not correspond to any substantial existing annotation. Using the DD3 fragment as a probe, we isolated a full-length cDNA clone from the cDNA library, which we termed BnSWD1 (Brassica napus salt responsive WD40 1). The predicted amino-acid sequence of BnSWD1 contains eight WD40 repeats and is conserved in all eukaryotes. Notably, the BnSWD1 gene is expressed at high levels under salt-stress conditions. Furthermore, we found that BnSWD1 was upregulated after treatment with abscisic acid, salicylic acid, and methyl jasmonate. Our study suggests that BnSWD1, which is a novel WD40 repeat-containing protein, has a function in salt-stress responses in plants, possibly via abscisic acid-dependent and/or -independent signaling pathways.

Analysis of the Stress Effects of Endocrine Disrupting Chemicals (EDCs) on Escherichia coli

  • Kim, Yeon-Seok;Min, Ji-Ho;Hong, Han-Na;Park, Ji-Hyun;Park, Kyeong-Seo;Gu, Man-Bock
    • Journal of Microbiology and Biotechnology
    • /
    • 제17권8호
    • /
    • pp.1390-1393
    • /
    • 2007
  • In this study, three of the representative EDCs, $17{\beta}$-estradiol, bisphenol A, and styrene, were employed to find their mode of toxic actions in E. coli. To accomplish this, four different stress response genes, recA, katG, fabA, and grpE genes, were used as a representative for DNA, oxidative, membrane, or protein damage, respectively. The expression levels of these four genes were quantified using a real-time RT-PCR after challenge with three different EDCs individually. Bisphenol A and styrene caused high-level expression of recA and katG genes, respectively, whereas $17{\beta}$-estradiol made no significant changes in expression of any of those genes. These results lead to the classification of the mode of toxic actions of EDCs on E. coli.