• Title/Summary/Keyword: stress-dependent damping

Search Result 15, Processing Time 0.025 seconds

Seismic analysis of bridges based on stress-dependent damping

  • Su, Li;Wang, Yuanfeng;Li, Pengfei;Mei, Shengqi;Guo, Kun
    • Structural Engineering and Mechanics
    • /
    • v.62 no.3
    • /
    • pp.281-289
    • /
    • 2017
  • Damping value has considerable influence on the dynamic and seismic behaviors of bridges. However, currently the constant damping ratios that are prescribed by most bridge seismic design codes can't truly represent the complicated damping character of actual structures. In this paper, a cyclic loading experiment was conducted to study the effect of stress amplitude on material damping of concrete to present an analyzing model of the material damping of concrete. Furthermore, based on the fundamental damping of structure measured under ambient vibration, combined with the presented stress-dependent material damping concrete, the seismic response of a bridge pier was calculated. Comparison between the calculated and experiment results verified the validity of the presented damping model. Finally, a modified design and analysis method for bridge was proposed based on stress-dependent damping theory, and a continuous rigid frame bridge was selected as the example to calculate the actual damping values and the dynamic response of the bridge under different earthquake intensities. The calculation results indicated that using the constant damping given by the Chinese seismic design code of bridges would overestimate the energy dissipation capacity of the bridge.

Bingham Properties and Damping Force Control of an ER Fluid under Squeeze Mode (압착모드하에서 ER유체의 빙햄특성 및 댐핑력 제어)

  • 홍성룡;최승복
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.11
    • /
    • pp.37-45
    • /
    • 2002
  • This paper presents the field-dependent Bingham characteristics and damping force control of an electro-rheological (ER) fluid under squeeze mode operation. The squeeze force of the ER fluid due to the imposed electric field is analyzed and an appropriate size of the disk-type electrode is devised. On the basis of the theoretical model of the ER fluid under squeeze mode operation, the yield stress and response speed of the ER fluid are distilled from the time responses of squeeze force to the step electric potentials. Measured squeeze forces under various excitation conditions are compared with the predicted ones from Bingham model and time constant obtained at the transient response test. In addition, the controllability of the field-dependent damping force of the ER fluid under squeeze mode is experimentally demonstrated by implementing simple PID controller.

Damping determination of FRP-confined reinforced concrete columns

  • Li, Xiaoran;Wang, Yuanfeng;Su, Li
    • Computers and Concrete
    • /
    • v.14 no.2
    • /
    • pp.163-174
    • /
    • 2014
  • Damping as a material property plays an important role in decreasing dynamic response of structures. However, very little is known about the evaluation and application of the actual damping of Fiber Reinforced Polymer Confined Reinforced Concrete (FRP-C RC) material which is widely adopted in civil engineering at present. This paper first proposes a stress-dependent damping model for FRP-C RC material using a validated Finite Element Model (FEM), then based on this damping-stress relation, an iterative scheme is developed for the computations of the non-linear damping and dynamic response of FRP-C RC columns at any given harmonic exciting frequency. Numerical results show that at resonance, a considerable increase of the loss factor of the FRP-C RC columns effectively reduces the dynamic response of the columns, and the columns with lower concrete strength, FRP volume ratio and axial compression ratio or higher longitudinal reinforcement ratio have stronger damping values, and can relatively reduce the resonant response.

Quasi-Steady Damping Force of Electro- and magneto-Rheo logical Flow Mode Dampers using Herschel-Bulkley Model (Herschel-Bulkley 모델에 의한 전기 및 자기장 유체 댐퍼의 준안정 상태 댐핑력 해석)

  • Lee, Dug-Young;Hwang, Woo-Seok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1298-1302
    • /
    • 2000
  • Electrorheological(HER) and magnetorheologica(MR) fluids have a unique ability to increase the dynamic yield stress of the fluid substantially when electric or magnetic field is applied. ER and MR fluid-based dampers are typically analyzed using Bingham-plastic shear flow analysis under Quasi-steady fully developed flow conditions. An alternative perspective, supported by measurements reported in the literature, is to allow for post-yield shear thinning and shear thickening. To model these, the constant post-yield plastic viscosity in Bingham model can be replaced with a power-law model dependent on shear strain rate that is known as the Herschel-Bulkley fluid model. The objective of this paper is to predict the damping forces analytically in a typical ER bypass damper for variable electric field, or yield stress using Herschel-Bulkley analysis.

  • PDF

Influence of Bingham Characteristics for ER Fluid on Semi-Active Suspension System (ER유체의 역학적 특성이 반능동 현가시스템에 미치는 영향)

  • 김옥삼;김일겸;조남철;박우철
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.3
    • /
    • pp.434-440
    • /
    • 2004
  • The electro-rheological fluids for semi-active suspension system are a class of colloidal dispersion which exhibit large reversible changes in their rheological behavior when they are subjected to external electrical fields. This paper presents Bingham properties of ER fluids subjected to temperature variations. In addition, an appropriate size of the ER damper for a passenger car is proposed to investigate the effects of Bingham characteristics on the damping performance. The filed-dependent damping forces are evaluated according to the temperature variation and sedimentation ratio.

Airbag Accelerometers Using Silicon Epitaxial Layers (실리콘 에피층을 이용한 자동차 에어백용 가속도계)

  • 고종수;김규현;이창렬;조영호;이귀로;곽병만
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.5
    • /
    • pp.9-15
    • /
    • 1996
  • A silicon microaccelerometer is designed and fabricated using silicon epitaxial layers for automotive electronic airbag applications. A cantilever structure is chosen for high sensitivity and piezoresistive detection method is adopted for circuit simplicity and low cost. An optimum design is used to find optimum microstructure sizes for maximum sensitivity subject to performance requirements and design constraints on natural frequency, damping ratio, maximum allowable stress and microfabrication limitations. The microaccelerometer is fabricated by micromachining processing steps, composed of material-selective and orientation-dependent chemical etching techniques. Fabricated prototype shows a sensitivity of 88.6$\mu\textrm{V}$/g within a resonant frequency of 1.75KHz. Estimated performance of the microaccelerometer is compared with measured one. Discrepancy between the theoretical values and the experimental values is discussed together with possible sources of the errors.

  • PDF

Performance Analysis of a Semi-Active Variable Damper Featuring Electro-Rheological Fluids (ER 유체를 이용한 반능동식 가변댐퍼의 성능해석)

  • 최승복;정재천;최용빈;허승진;서문석
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.1 no.1
    • /
    • pp.90-100
    • /
    • 1993
  • This paper presents some inherent characteristics of a semi-active variable damper featuring electro-rheological (ER) fluid. The damping force of the damper can be selectively adjusted or controlled by employing electric field to the ER fluid domain. This is possible owing to the pressure drop across the piston occured by field-dependent variable yield stress of the ER fluid. This is fundamentally different than the performance of a conventional adjustable viscous damper. To demonstrate the effectiveness and superiority over the conventional one, the proposed damper is incorporated with a suspension system. A quarter car model with the suspension system is formulated and represented by a state equation. By choosing numerical values based on realistic package size, power requirements and suitable ER properties, the performance characteristics of the suspension system are obtained and evaluated in both frequency and time domains. The effects of constant electric field and on-off controlled electric field which relates to the damping force are also examined.

  • PDF

Analysis of an Infinitely Long Squeeze Film Damper Operating with an Electro-Rheological Fluid (Electro-Rheological 유체를 이용한 무한폭 스퀴즈 필름 댐퍼 해석)

  • Jeong, Si-Yeong;Choe, Seung-Bok;Jo, Yong-Cheol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.9 no.3
    • /
    • pp.61-66
    • /
    • 1992
  • This paper addresses on the determination of damping coefficients of an infinitely long squeeze film damper operating with an electro-rheological (ER) fluid. The ER fluid behaves as Bingham fluid with an electric field dependent yield shear stress. AS phenomenological model of the fluid is adopted for the relationship between the yield shear and the intensity of the electric field imposed on the fluid domain. The model is then incorporated with the governing equation and associated boundary conditions of the squeeze film damper executing a circula centered orbit for the expression of dimension- less damping coefficients. Numerical simulation is performed to evaluate the performance improvement of the proposed squeeze film damper.

  • PDF

Effects of Material Characteristics on the Dynamic Response of the Reinforced Concrete Slabs (재료 특성이 철근 콘크리트 슬래브의 동적 거동에 미치는 영향)

  • Oh, Kyung-Yoon;Cho, Jin-Goo;Hong, Chong-Hyun
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.49 no.4
    • /
    • pp.43-49
    • /
    • 2007
  • The reinforced concrete slab is one of main structure members in the construction industry sector. However, most of researches regarding to RC slabs have been focused on two-dimensional Mindlin-type plate element on the basis of laminated plate theory since three-dimensional solid element has a lot of difficulties in finite element formulation and costs in CPU time. In reality, the RC slabs are subjected to dynamic loads like a heavy traffic vehicle load, and thus should insure the safety from the static load as well as dynamic load. Once we can estimate the dynamic behaviour of RC slabs exactly, it will be very helpful for design of it. In this study, the 20-node solid element has been used to analyze the dynamic characteristics of RC slabs with clamped edges. The elasto-visco plastic model for material non-linearity and the smeared crack model have been adopted in the finite element formulation. The applicability of the proposed finite element has been tested for dynamic behaviour of RC slabs with respect to characteristics of concrete materials in terms of cracking stress, crushing strain, fracture energy and Poisson's ratio. The effect on dynamic behaviour is dependent on not crushing strain but cracking stress, fracture energy and Poisson's ratio. In addition to this, it is shown the damping phenomenon of RC slabs has been identified from the numerical results by using Rayleigh damping.

Seismic analysis of tunnel considering the strain-dependent shear modulus and damping ratio of a Jointed rock mass (절리암반의 변형률 의존적 전단탄성계수 및 감쇠비 특성을 고려한 터널의 내진 해석)

  • Song, Ki-Il;Jung, Sung-Hoon;Cho, Gye-Chun;Lee, Jeong-Hark
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.12 no.4
    • /
    • pp.295-306
    • /
    • 2010
  • Contrary to an intact rock, the jointed rock mass shows strain-dependent deformation characteristics (elastic modulus and damping ratio). The maximum elastic modulus of a rock mass can be obtained from an elastic wave-based exploration in a small strain level and applied to seismic analyses. However, the assessment and application of the non-linear characteristics of rock masses in a small to medium strain level ($10^{-4}{\sim}0.5%$) have not been carried out yet. A non-linear dynamic analysis module is newly developed for FLAC3D to simulate strain-dependent shear modulus degradation and damping ratio amplification characteristics. The developed module is verified by analyzing the change of the Ricker wave propagation. Strain-dependent non-linear characteristics are obtained from disks of cored samples using a rock mass dynamic testing apparatus which can evaluate wave propagation characteristics in a jointed rock column. Using the experimental results and the developed non-linear dynamic module, seismic analyses are performed for the intersection of a shaft and an inclined tunnel. The numerical results show that vertical and horizontal displacements of non-linear analyses are larger than those of linear analyses. Also, non-linear analyses induce bigger bending compressive stresses acting on the lining. The bending compressive stress concentrates at the intersection part. The fundamental understanding of a strain-dependent jointed rock mass behavior is achieved in this study and the analytical procedure suggested can be effectively applied to field designs and analyses.