• Title/Summary/Keyword: stress wave velocity

Search Result 242, Processing Time 0.031 seconds

Relationship Between Stiffness And Shear Strength of Normally Consolidated Clays (정규압밀점토의 강성도와 전단강도의 상관관계)

  • Park, Chi-Won;Park, Dong-Sun;Mok, Young-Jin
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.402-413
    • /
    • 2006
  • Strength evaluation of soft soils is a formidable task because of difficulties in sampling, specimen preparation and setting in triaxial cells. In undrained triaxial testing, sampling disturbance, verticality of specimen and bedding effect give a great influence on shear strength measurements. In the other hand, shear wave measurements of specimens are less influenced by these factors. In this research, the bender elements were attached top cap and base pedestal of triaxial cell and shear wave velocities were measured. To initiate a methodology to evaluate shear strength indirectly by measuring shear wave velocity, a relationship between shear strength and shear wave velocity was developed with kaolinite specimens consolidated in the laboratory. Undrained shear strength turns out to increase linearly with shear wave velocity. Stress-strain curves can also be predicted with a hyperbolic model and shear wave measurements.

  • PDF

Applicability of Coda Wave Interferometry Technique for Measurement of Acoustoelastic Effect of Concrete

  • Shin, Sung Woo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.34 no.6
    • /
    • pp.428-434
    • /
    • 2014
  • In this study, we examined the applicability of coda wave interferometry (CWI) technique, which was developed to characterize seismic waves, to detect and evaluate change in the velocity of ultrasonic waves in concrete due to acoustoelastic effect. Ultrasonic wave measurements and compressive loading tests were conducted on a concrete specimen. The measured wave signals were processed with CWI to detect and evaluate the relative velocity change with respect to the stress state of the specimen. A phase change due to the acoustoelastic effect of concrete was clearly detected in the late-arriving coda wave. This shows that the relative velocity change of ultrasonic waves in concrete due to the acoustoelastic effect can be evaluated successfully and precisely using CWI.

OCR evaluation of cohesionless soil in centrifuge model using shear wave velocity

  • Cho, Hyung Ik;Sun, Chang Guk;Kim, Jae Hyun;Kim, Dong Soo
    • Geomechanics and Engineering
    • /
    • v.15 no.4
    • /
    • pp.987-995
    • /
    • 2018
  • In this study, a relationship between small-strain shear modulus ($G_{max}$) and overconsolidation ratio (OCR) based on shear wave velocity ($V_S$) measurement was established to identify the stress history of centrifuge model ground. A centrifuge test was conducted in various centrifugal acceleration levels including loading and unloading sequences to cause various stress histories on centrifuge model ground. The $V_S$ and vertical effective stress were measured at each level of acceleration. Then, a sensitivity analysis was conducted using testing data to ensure the suitability of OCR function for the tested cohesionless soils and found that OCR can be estimated based on $V_S$ measurements irrespective of normally-consolidated or overconsolidated loading conditions. Finally, the developed $G_{max}$-OCR relationship was applied to centrifuge models constructed and tested under various induced stress-history conditions. Through a series of tests, it was concluded that the induced stress history on centrifuge model by compaction, g-level variation, and past overburden load can be analysed quantitatively, and it is convinced that the OCR evaluation technique will contribute to better interpret the centrifuge test results.

Investigation of influences of mixing parameters on acoustoelastic coefficient of concrete using coda wave interferometry

  • Shin, Sung Woo;Lee, Jiyong;Kim, Jeong-Su;Shin, Joonwoo
    • Smart Structures and Systems
    • /
    • v.17 no.1
    • /
    • pp.73-89
    • /
    • 2016
  • The stress dependence of ultrasonic wave velocity is known as the acoustoelastic effect. This effect is useful for stress monitoring if the acoustoelastic coefficient of a subject medium is known. The acoustoelastic coefficients of metallic materials such as steel have been studied widely. However, the acoustoelastic coefficient of concrete has not been well understood yet. Basic constituents of concrete are water, cement, and aggregates. The mix proportion of those constituents greatly affects many mechanical and physical properties of concrete and so does the acoustoelastic coefficient of concrete. In this study, influence of the water-cement ratio (w/c ratio) and the fine-coarse aggregates ratio (fa/ta ratio) on the acoustoelastic coefficient of concrete was investigated. The w/c and the fa/ta ratios are important parameters in mix design and affect wave behaviors in concrete. Load-controlled uni-axial compression tests were performed on concrete specimens. Ultrasonic wave measurements were also performed during the compression tests. The stretching coda wave interferometry method was used to obtain the relative velocity change of ultrasonic waves with respect to the stress level of the specimens. From the experimental results, it was found that the w/c ratio greatly affects the acoustoelastic coefficient while the fa/ta ratio does not. The acoustoelastic coefficient increased from $0.003073MPa^{-1}$ to $0.005553MPa^{-1}$ when the w/c ratio was increased from 0.4 to 0.5. On the other hand, the acoustoelastic coefficient changed in small from $0.003606MPa^{-1}$ to $0.003801MPa^{-1}$ when the fa/ta ratio was increased from 0.3 to 0.5. Finally, it was also found that the relative velocity change has a linear relationship with the stress level of concrete.

3D AE source location considering the anisotropy of elastic wave velocity under triaxial compression

  • Cho Hyuk-Ki;Song Jae-Joon;Lee Chung-In
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.198-205
    • /
    • 2003
  • We considered the variation of elastic wave velocity due to the anisotropy of rock materials and stress level for acoustic emission (AE) source location in cylindrical rock specimens. Elastic wave velocity and AE were measured for Keochang granite and Yeosan marble under various axial stresses and confining pressures. Partition approximation method was suggested and it was compared with the difference approximation method and the least square method.

  • PDF

Assessment of Incipient Decay of Radiata Pine Wood Using Stress-wave Technique in the Transverse Direction (횡단방향(橫斷方向) 응력파(應力波) 방법(方法)에 의(依)한 라디에타소나무의 초기부후(初期腐朽) 평가(評價))

  • Kim, Gyu-Hyeok;Jee, Woo-Guen;Ra, Jong-Bum
    • Journal of the Korean Wood Science and Technology
    • /
    • v.24 no.3
    • /
    • pp.18-27
    • /
    • 1996
  • The feasibility of using stress-wave technique in the transverse direction for the assessment of early stages of decay was investigated using compression test specimens having different annual ring orientations subjected to decay by Tyromyces palustris for various time intervals. Decay detection, quantitative assessment of decay, and the prediction of residual strength of decayed wood with less than five percent weight loss can be feasible using stress-wave parameters (wave velocity, wave impedance, and stress-wave elasticity) and their percent reduction due to decay, measured by stress-wave technique in the transverse direction. The use of stress-wave technique in the transverse direction for the application of this technique to structural members in service is desirable, when considering the easiness of attachment of accelerometers of stress-wave measuring device on the surface of members and also accurate detection of localized decayed areas. In stress-wave technique in the transverse direction, stress-wave parameters measured were different according to the angles between wave propagation path and annual ring, due to the anisotropy of wood structure. Therefore, it is recommended to use percent reduction in stress-wave parameters instead of stress-wave parameters. This evaluation method using percent reduction in stress-wave parameters is ideal when it is impossible to observe annual ring orientation on the transverse surface of wood.

  • PDF

Estimation of Prestressed Tension on Grouted PSC Tendon Using Measured Elastic Wave Velocity (응력파속도를 이용한 부착식 PSC 텐던의 긴장력 추정)

  • Kim, Byeong Hwa;Jang, Jung Bum;Lee, Hong Pyo;Lee, Il Keun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.5A
    • /
    • pp.289-297
    • /
    • 2012
  • This study proposes an experimental formula that can estimate the applied tensile stress of a bonded PSC by measuring a longitudinal stress wave velocity of tendon. To develop practical formula, the various bonded PSC specimens are constructed with different levels of prestresses. For all the bonded PSC specimens, the longitudinal impact-echo tests are repeated with various experimental conditions. Considering a few influence factors such as temperature, length and the number of strands, the application of the law of similarity results in a nondemensional experimental formula that could estimate existing tensile stress on tendon by measuring its longitudinal stress wave velocity. Next, a feasibility study of proposed approach has been conducted for a real reactor building containment. The estimated stress levels of two vertical tendons embedded in the nuclear plant are close to their design values.

Three-Dimensional Simulation of Seismic Wave Propagation in Elastic Media Using Finite-Difference Method (유한차분법을 이용한 3차원 지진파 전파 모의)

  • 강태섭
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.10a
    • /
    • pp.81-88
    • /
    • 2000
  • The elastic wave equation is solved using the finite-difference method in 3D space to simulate the seismic wave propagation. It is based on the velocity-stress formulation of the equation of motion on a staggered grid. The nonreflecting boundary conditions are used to attenuate the wave field close to the numerical boundary. To satisfy the stress-free conditions at the free-surface boundary, a new formulation combining the zero-stress formalism with the vacuum one is applied. The effective media parameters are employed to satisfy the traction continuity condition across the media interface. With use of the moment-tensor components, the wide range of source mechanism parameters can be specified. The numerical experiments are carried out in order to test the applicability and accuracy of this scheme and to understand the fundamental features of the wave propagation under the generalized elastic media structure. Computational results show that the scheme is sufficiently accurate for modeling wave propagation in 3D elastic media and generates all the possible phases appropriately in under the given heterogeneous velocity structure. Also the characteristics of the ground motion in an sedimentary basin such as the amplification, trapping, and focusing of the elastic wave energy are well represented. These results demonstrate the use of this simulation method will be helpful for modeling the ground motion of seismological and engineering purpose like earthquake hazard assessment, seismic design, city planning, and etc..

  • PDF

Effect of Anisotropic Ratio for Rayleigh Wave of a Half-Infinite Composite Material (반 무한 복합체의 Rayleigh 표면파에 대한 이방성비의 영향)

  • Baek, Un-Cheol;Hwang, Jae-Seok;Song, Yong-Tae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.3
    • /
    • pp.502-509
    • /
    • 2001
  • In this paper, when stress waves are propagated along the reinforced direction of the composite, the characteristic equation of Rayleigh wave is derived. The relationships between velocities of stress waves and Rayleigh wave are studied for anisotropic ratios(E(sub)11/E(sub)12 or E(sub)22/E(sub)11). The increments of anisotropic ratios is made by using known material properties and being constant of basic properties. When the anisotropic ratios are increased, Rayleigh wave velocities to the shear wave velocities are almost equal to 1 with any anisotropic ratios. Rayleigh wave velocities to the longitudinal wave velocities and Shear wave velocities ratio to the longitudinal wave velocities are almost identical each other, they are between 0.12 and 0.21. When the anisotropic ration is very high, that is, E(sub)11/E(sub)22=46.88, Rayleigh wave velocities and the shear wave velocities are almost constant with Poissons ratio, longitudinal wave velocities are very slowly increased with the increments of Poissons ratios. When E(sub)11(elastic modulus of the reinforced direction)and ν(sub)12 are constant, Rayleigh wave velocities and the shear wave velocities are steeply decreased with the increments of anisotropic ratios and the velocities of longitudinal wave are almost constant with them. When E(sub)22(elastic modulus of the normal direction to the fiber) and ν(sub)12 are constant, Rayeigh wave velocities is slowly increased with the increments of anisotropic ratios, the shear wave velocities are almost constant with them, the longitudinal wave velocities are steeply increased with them.

Numerical analysis of stress wave of projectile impact composite laminate

  • Zhangxin Guo;Weijing Niu;Junjie Cui;Gin Boay Chai;Yongcun Li;Xiaodong Wu
    • Structural Engineering and Mechanics
    • /
    • v.87 no.2
    • /
    • pp.107-116
    • /
    • 2023
  • The three-dimensional Hashin criterion and user subroutine VUMAT were used to simulate the damage in the composite layer, and the secondary stress criterion was used to simulate the interlayer failure of the cohesive element of the bonding layer and the propagation characteristics under the layer. The results showed that when the shear stress wave (shear wave) propagates on the surface of the laminate, the stress wave attenuation along the fiber strength direction is small, and thus producing a large stress profile. When the compressive stress wave (longitudinal wave) is transmitted between the layers, it is reflected immediately instead of being transmitted immediately. This phenomenon occurs only when the energy has accumulated to a certain degree between the layers. The transmission of longitudinal waves is related to the thickness and the layer orientation. Along the symmetry across the thickness direction, the greater is the stress amplitude along the layer direction. Based on the detailed investigation on the impact on various laminated composites carried out in this paper, the propagation characteristics of stress waves, the damage and the destruction of laminates can be explained from the perspective of stress waves and a reasonable layering sequence of the composite can be designed against damage and failure from low velocity impact.