• 제목/요약/키워드: stress wave velocity

검색결과 243건 처리시간 0.025초

Rayleigh wave at imperfectly corrugated interface in FGPM structure

  • K. Hemalatha;S. Kumar;A. Akshaya
    • Coupled systems mechanics
    • /
    • 제12권4호
    • /
    • pp.337-364
    • /
    • 2023
  • The Rayleigh wave propagation is considered in the structure of the functionally graded piezoelectric material (FGPM) layer over the elastic substrate. The elastic substrate loosely bonds the layer through a corrugated interface, whereas its upper boundary is also corrugated but stress-free. Additionally, the solutions for the FGPM layer and substrate are derived using the fundamental variable separable approach to convert the partial differential equation to an ordinary differential equation. The results with boundary conditions lead to dispersion relations for the electrically open and electrically short cases in the determinant form. The outcomes have been numerically analyzed using a specific model. The findings were presented in the form of graphs, which were created using Mathematica 7. Graphs are plotted for variations in wavenumber and phase velocity. The outcomes may help measure interface defects and design Surface Acoustic Wave (SAW) devices.

이어도 종합해양과학기지에 대한 설계파력의 검토 II: 쇄파역에서의 유체력 (Investigation on the Design Wave Forces for Ear-do Ocean Research Station II: Fluid Force in the Breaking Wave Field)

  • 전인식;심재설;최성진
    • 한국해안해양공학회지
    • /
    • 제12권4호
    • /
    • pp.168-180
    • /
    • 2000
  • In the Part I, the three dimensional model testing with NNW deep water wave direction gave the results such that the occurrence of breaking waves over the peak of Ear-Do caused very small wave height at the structure position. But the measured wave forces were rather greater than the calculated forces based on deep water wave height. Furthermore, It was also perceived that the time series of the forces looked like corresponding to the case that waves were superimposed by an unidirectional current. In the present Part II, the current is presumed to be a flow secondly induced by breaking waves, and an extensive study to clarify the current in a quantitative sense is performed through numerical analysis and hydraulic experiment. The results showed that a strong circulation can surely occur in the vicinity of the structure due to radiation stress differentials given by the breaking waves. It was also recognized that the velocity of the induced current varied with the magnitude of energy dissipation rate introduced in the numerical analysis. The numerical analysis was tuned adjusting the dissipation rate so that the calculated wave field could closely match with the experimental results of Part I. The fluid force (in prototype) for the optimal match showed approximately 2.2% increased over the calculated value based on the deep water wave height (24.6m) whereas the force corresponding to the average of the experimental values showed the increase of about 13.0%.

  • PDF

구멍을 통과하는 계면균열의 전파거동 (Propagation Behavior of the Interface Crack Through a Hole)

  • 이억섭;윤해룡;황시원
    • 대한기계학회논문집A
    • /
    • 제24권11호
    • /
    • pp.2823-2827
    • /
    • 2000
  • The dynamic photoelasticity with the aid of Cranz-Shardin type high speed camera system is utilized to record the dynamically propagating behavior of an interface crack. This paper investigates determined the effects of the hole (exited on the path of the crack propagation) on the crack propagation behavior by comparing the experiment isochromatic fringes to the theoretical stress fields.

압축피로에 의한 포천화강암의 P파속도 변화 특성 (P wave Velocity Variation of the Pochon Granite due to the Cyclic Loadings)

  • 김영화;장보안;김재동;이찬구;문병관
    • 자원환경지질
    • /
    • 제30권3호
    • /
    • pp.231-240
    • /
    • 1997
  • The behavior of rocks and microcrack development due to fatigue stresses are investigated using cyclic loading tests and ultrasonic velocity measurements. Twenty six medium-grained granite samples from the Pochon area are selected for measurements. Ultrasonic velocities are measured for samples before fatigue test to characterize the pre-existing microcracks. Then, thirteen different cycles of loadings with 70% and 80% dynamic strength are applied to the samples. The ultrasonic velocities are measured again to compare velocities after applications of fatigue stress with those before applications of fatigue stress. The results show that most microcracks are developed along the direction parallel to the axis of loading and that the amount of microcracks increases, as loading levels and numbers of cycle increase.

  • PDF

심혈관 노화가 맥상(脈象)에 미치는 영향 (A Study of the Cardiovascular Aging Effect on the Pulse Shape)

  • 신상훈;임혜원;박영재;박영배
    • 대한한의진단학회지
    • /
    • 제9권1호
    • /
    • pp.59-68
    • /
    • 2005
  • Background and purpose: Cardiovascular disease will undoubtedly rise along with the aging of the 'baby-boom' generation. The purpose of this study is to find the new index of the cardiovascular aging. Methods: The effects of aging on the heart and the arterial system are surveyed in the point of structure and function. Results: Arterial stiffening is due to the fatiguing effects of periodic stress on the arterial wall and is the main reason for increasing pulse wave velocity. The systolic hypertension is caused by the early return of wave reflection. The increased after-load by the arterial change leads to the development of left ventricular hypertrophy. The reduction in left ventricular compliance cause the impairments of the diastolic function. In contrast to the lower limb, aging effect in the upper limb are almost due to the ascending aortic pressure wave and the reflected wave from the lower limb. Conclusion: We have the following points. (1) The change of physiological pulse pattern by age can be explained by the early returning of reflected wave. (2) The atrial pulse in old age are generated by the left ventricular hypertrophy.

  • PDF

Torsional waves in fluid saturated porous layer clamped between two anisotropic media

  • Gupta, Shishir;Kundu, Santimoy;Pati, Prasenjit;Ahmed, Mostaid
    • Geomechanics and Engineering
    • /
    • 제15권1호
    • /
    • pp.645-657
    • /
    • 2018
  • The paper aims to analyze the behaviour of torsional type surface waves propagating through fluid saturated inhomogeneous porous media clamped between two inhomogeneous anisotropic media. We considered three types of inhomogeneities in upper anisotropic layer which varies exponentially, quadratically and hyperbolically with depth. The anisotropic half space inhomogeneity varies linearly with depth and intermediate layer is taken as inhomogeneous fluid saturated porous media with sinusoidal variation. Following Biot, the dispersion equation has been derived in a closed form which contains Whittaker's function and its derivative, for approximate result that have been expanded asymptotically up to second term. Possible particular cases have been established which are in perfect agreement with standard results and observe that when one of the upper layer vanishes and other layer is homogeneous isotropic over a homogeneous half space, the velocity of torsional type surface waves coincides with that of classical Love type wave. Comparative study has been made to identify the effects of various dimensionless parameters viz. inhomogeneity parameters, anisotropy parameters, porosity parameter, and initial stress parameters on the torsional wave propagation by means of graphs using MATLAB. The study has its own relevance in connection with the propagation of seismic waves in the earth where fluid saturated poroelastic layer is present.

Application of machine learning and deep neural network for wave propagation in lung cancer cell

  • Xing, Lumin;Liu, Wenjian;Li, Xin;Wang, Han;Jiang, Zhiming;Wang, Lingling
    • Advances in nano research
    • /
    • 제13권3호
    • /
    • pp.297-312
    • /
    • 2022
  • Coughing and breath shortness are common symptoms of nano (small) cell lung cancer. Smoking is main factor in causing such cancers. The cancer cells form on the soft tissues of lung. Deformation behavior and wave vibration of lung affected when cancer cells exist. Therefore, in the current work, phase velocity behavior of the small cell lung cancer as a main part of the body via an exact size-dependent theory is presented. Regarding this problem, displacement fields of small cell lung cancer are obtained using first-order shear deformation theory with five parameters. Besides, the size-dependent small cell lung cancer is modeled via nonlocal stress/strain gradient theory (NSGT). An analytical method is applied for solving the governing equations of the small cell lung cancer structure. The novelty of the current study is the consideration of the five-parameter of displacement for curved panel, and porosity as well as NSGT are employed and solved using the analytical method. For more verification, the outcomes of this reports are compared with the predictions of deep neural network (DNN) with adaptive optimization method. A thorough parametric investigation is conducted on the effect of NSGT parameters, porosity and geometry on the phase velocity behavior of the small cell lung cancer structure.

분지관 내 물체 주위 맥동류에 대한 CFD 해석 (CFD ANALYSIS FOR A PULSATILE FLOW AROUND A BODY INSIDE A BIFURCATED TUBE)

  • 황도연;유성수;이명수;한병윤;박형구
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2009년 춘계학술대회논문집
    • /
    • pp.183-190
    • /
    • 2009
  • The objective of this study is to get simulation data about pulsatile flow around an interior solid body inside a bifurcated tube. All the processes were based on CFD method, with a commercial FVM code, SC/Tetra ver. 6.0 for solving, and with CATIA R16 for generating geometries. The bifurcated tube models were drawn with the bifurcated angle of 45 degrees, considering Murray's law about the diameter ratio. With various locations of the object, the effects of flow on the drag were considered. For the pulsating flow condition, the velocity wave profile was given as the inlet boundary condition. To validate all the result, the simulation was compared with the existing data of the other papers first. Overall flow field of both data were similar, but there was some difference at a zero velocity. Therefore the next simulation was continued with the sine wave profiles where there is no negative flow, and then the data was compared with one of the pulmonary artery velocity where there is negative flow. The final process was to calculate flow variables such as the wall shear stress (WSS) and to compute the drag of the solid object.

  • PDF

흐름저항응력 및 초기수심에 따른 댐붕괴류의 수리특성 (Hydraulic Characteristics of Dam Break Flow by Flow Resistance Stresses and Initial Depths)

  • 송창근;이승오
    • 한국수자원학회논문집
    • /
    • 제47권11호
    • /
    • pp.1077-1086
    • /
    • 2014
  • 댐붕괴에 의해 발생하는 홍수파는 초기수심의 깊이에 따라서 하류부로 전달되는 수리학적 특성이 다르게 나타나며, 수치모의 시 흐름저항응력은 충격파의 전파 속도, 도달 거리 및 접근 수심 등에 영향을 미친다. 본 연구에서는 천수방정식을 SU/PG 기법으로 이산화한 모형을 개발하고 해석해를 이용하여 모형을 검증한 후, 초기수심 및 흐름저항응력에 따른 댐붕괴류의 전파특성을 분석하였다. 바닥마찰력을 적용한 경우 수심은 상대적으로 컸으나 충격파의 도달거리는 짧게 나타났다. Coulomb 응력을 적용한 경우 댐붕괴 후면에서의 유속이 상대적으로 작게 나타났으나, 충격파가 도달하는 영역에서는 바닥마찰력을 적용한 값과 흐름저항응력을 고려하지 않은 값 사이의 유속을 보였다. 또한 초기수심에 관계없이 흐름 저항응력을 고려하지 않은 경우의 불연속면에서의 Fr 수가 1.0에 가장 근사하였다. 초기수심이 얕은 경우 Coulomb 응력에 의한 모의결과가 난류응력을 적용한 경우에 비해 우수한 모의결과를 도출하였으나, 초기수심이 깊어지는 경우 흐름저항항의 영향력이 소멸되므로 반대의 양상이 나타났다.

Self-healing capacity of damaged rock salt with different initial damage

  • Chen, Jie;Kang, Yanfei;Liu, Wei;Fan, Jinyang;Jiang, Deyi;Chemenda, Alexandre
    • Geomechanics and Engineering
    • /
    • 제15권1호
    • /
    • pp.615-620
    • /
    • 2018
  • In order to analyze the healing effectiveness of rock salt cracks affected by the applied stresses and time, we used the ultrasonic technology to monitor the ultrasonic pulse velocity (UPV) variations for different initial stress-damaged rock salts during self-healing experiments. The self-healing experiments were to create different conditions to improve the microcracks closure or recrystallized, which the self-healing effect of damaged salt specimens were analyzed during the recovery period about 30 days. We found that: The ultrasonic pulse velocity of the damaged rock salts increases rapidly during the first 9 days recovery, and the values gradually increase to reach constant values after 30 days. The damaged value and the healed value were identified based on the variation of the wave velocity. The damaged values of the specimens that are subject to higher initial damage stress are still keeping in large after 30 days recovery under the same recovery condition It is interesting that the damage and the healing were not in the linear relationship, and there also existed a damage threshold for salt cracks healing ability. When the damage degree is less than the threshold, the self-healing ratio of rock salt is increased with the increase in damage degree. However, while the damage degree exceeds the threshold, the self-healing ratio is decreased with the increase in damage.