• Title/Summary/Keyword: stress sensors

Search Result 284, Processing Time 0.026 seconds

Magneto-impedance effect of CoFeSiBNi amorphous magnetic films (CoFeSiBNi 아몰퍼스 합금의 자기-임피던스 효과)

  • Lee, Seung-Hun;Park, Byung-Kyu;Hwang, Sung-Woo;Moon, Sung
    • Journal of Sensor Science and Technology
    • /
    • v.16 no.5
    • /
    • pp.389-393
    • /
    • 2007
  • Soft ferromagnetic materials are very useful for many sensors using magnetic materials demanding high permeability, low coercivity and low hysteresis loss. Among them, FeCoSiBNi amorphous magnetic films show a good impedance change (about 5.01 %/Oe, at 10 MHz) by the exterinal magnetic field in this experiment. The magnetic films are produced by melt-spun method, one of the rapid solidification process. Ribbon shape wires were made from the films, and let them annealed in DC magnetic field to increase the maximum Giant Magneto Impedance ratio. Field annealing decreases the stress and changes the effective anisotropy. Thus, we can find that the impedance change (200.47 %) is improved and the fabricated magnetic wire has characteristics of good sensor element.

A Hybrid Fiber-Optic Sensor System for Multi-Stress Condition Monitoring of Wind Turbines (하이브리드 광섬유 센서 시스템을 이용한 풍력발전기의 다중물리량 상태감시)

  • Kim, Dae-Gil;Kim, Hyunjin;Song, Minho
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.8
    • /
    • pp.76-82
    • /
    • 2015
  • A hybrid fiber-optic sensor system which combines fiber Bragg grating sensors and a Michelson interferometer has been constructed and evaluated for condition monitoring of large scale wind turbines. In order to measure multiple stresses applied to wind turbines such as strain, temperature and vibration, the system uses single broadband light source. It addresses both types of sensors, which simplifies the optical setup and enhances the cost-effectiveness of condition monitoring system. An athermal-packaged FBG is used to supply quasi-coherent light, of which coherence length is about 3.28mm, for the Michelson interferometer demodulation. Experimental results demonstrated that the proposed fiber-optic sensor system was capable of measuring strain and temperature with measurement accuracy of 1pm. Also 500~2000Hz vibration signals were successfully analyzed by applying FFT signal processing to interference signals.

A Study on Tensile Strength of the 3D Printing Product According to the Nitrogen Concentration of Chamber Inside (챔버 내부의 질소 농도에 따른 3D프린팅 출력물의 인장 강도에 관한 연구)

  • Lee, Song Yeon;Huh, Yong Jeong
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.1
    • /
    • pp.103-107
    • /
    • 2022
  • Scaffolds are the structures that safely protect sensors in various parts of the body. Because of scaffolds must protect sensors from load, the tensile strength of the scaffolds must be higher than 750 kgf/cm2. Currently, the tensile strength of scaffolds made with the 3d printer is 714 kgf/cm2. We confirm that the tensile strength of the scaffolds increase using air with high nitrogen concentration. In this study, we conducted experiments to find nitrogen concentrations in which the tensile strength of the specimen is higher than 750 kgf/cm2. The nitrogen control device and the nitrogen concentration sensor were installed in the chamber type 3d printer. The nitrogen concentration inside the 3d printer was changed by 5 % from 80 % to 100 %. Specimens of ASTM D 638 standard were produced under changed nitrogen concentration. We measured the tensile strength of specimens. We compared the tensile strength of specimens produced under each nitrogen concentration. We confirmed that when air with nitrogen concentration of 90 % was used, the tensile strength of scaffolds were 762 kgf/cm2.

Gut-Brain Connection: Microbiome, Gut Barrier, and Environmental Sensors

  • Min-Gyu Gwak;Sun-Young Chang
    • IMMUNE NETWORK
    • /
    • v.21 no.3
    • /
    • pp.20.1-20.18
    • /
    • 2021
  • The gut is an important organ with digestive and immune regulatory function which consistently harbors microbiome ecosystem. The gut microbiome cooperates with the host to regulate the development and function of the immune, metabolic, and nervous systems. It can influence disease processes in the gut as well as extra-intestinal organs, including the brain. The gut closely connects with the central nervous system through dynamic bidirectional communication along the gut-brain axis. The connection between gut environment and brain may affect host mood and behaviors. Disruptions in microbial communities have been implicated in several neurological disorders. A link between the gut microbiota and the brain has long been described, but recent studies have started to reveal the underlying mechanism of the impact of the gut microbiota and gut barrier integrity on the brain and behavior. Here, we summarized the gut barrier environment and the 4 main gut-brain axis pathways. We focused on the important function of gut barrier on neurological diseases such as stress responses and ischemic stroke. Finally, we described the impact of representative environmental sensors generated by gut bacteria on acute neurological disease via the gut-brain axis.

Nonlinear free vibration impact on the smart small-scale thermo-mechanical sensors for monitoring the information in sports application

  • Yi Zhang;Maryam Bagheri
    • Steel and Composite Structures
    • /
    • v.50 no.6
    • /
    • pp.609-625
    • /
    • 2024
  • This paper presents an in-depth analysis of the nonlinear vibration of microbeams, with a particular emphasis on their application in sports monitoring systems. The research utilizes classical beam theory, modified couple stress theory, and von-Kármán nonlinear parameters to explore the behavior of microbeams. These microbeams are characterized by a non-uniform geometry, with materials that continuously change along the beam radius and a thickness that varies along the beam length. The main contribution lies in its exploration of the stability of smart sensors in sports structures, particularly those with non-uniform geometries. The research findings indicate that these non-uniform microbeams, when used in smart systems made of functionally graded temperature-dependent materials, can operate effectively in thermal environments. The smart system developed in this study demonstrates significant potential for use in sports applications, particularly in monitoring and gathering information. The insights gained from this research contribute to the understanding of the performance and optimization of microbeams in sports applications, particularly in the context of non-uniform geometries. This research, therefore, provides a foundation for the development of advanced, reliable, and efficient monitoring systems in sports applications.

A Basic Study on Implementing Optimal Function of Motion Sensor for Bridge Navigational Watch Alarm System

  • Jeong, Tae-Gweon;Bae, Dong-Hyuk
    • Journal of Navigation and Port Research
    • /
    • v.38 no.6
    • /
    • pp.645-653
    • /
    • 2014
  • A Bridge Navigational Watch Alarm System (hereafter 'BNWAS') is to monitor and detect if an officer of watch(hereafter 'OOW') keeps a sharp lookout on the bridge. The careless lookout of an OOW could lead to marine accidents. For this reason on June 5th, 2009, IMO decided that a ship is equipped with a BNWAS. However, an existing BNWAS gives the OOW a lot of inconvenience and stress in its operation. It requires that the OOW should press reset buttons to confirm their alert watch on the bridge at every three to twelve minute. Many OOWs have complained that at some circumstances they cannot focus on their bridge activities including watch-keeping due to a lots of resetting inputs of BNWAS. Accordingly, IMO has allowed the use of a motion sensor as a resetting device. The motion sensor detects the movements of human body on the bridge and subsequently sends reset signals directly to BNWAS automatically. As a result, OOWs can work uninterrupted. However, some of classification societies and flag authorities have a slightly different stance on the use of motion sensor as a resetting method for BNWAS. The reason is that the motion sensor may trigger false reset signals caused by the motion of objects on the bridge, especially a slight movement such as toss and turn of human body which can extend the period of careless watch. As a basic study to minimize the false reset signals, this paper proposes a simple configuration of BNWAS, which consists of only three motion sensors associated with 'AND' and 'OR' logic gates. Additionally, several considerations are also proposed for the implementation of motion sensors. This study found that the proposed configuration which consists of three motion sensors is better than an existing one by reducing false reset signals caused by a slight movement of human body in one's sleep. The proposed configuration in this paper filters false reset signals and is simple to be implemented on existing vessels. In addition, it can be easily installed just by a basic electrical knowledge.

Fabrication and Characteristics of Piezoresistive Flow Sensor with Microbeam Structures (미소 빔 구조를 가진 압저항형 유체센서의 제작 및 특성)

  • Park, Chang-Hyun;Kang, Sung-Gyu;Yu, In-Sik;Sim, Jun-Hwan;Lee, Jong-Hyun
    • Journal of Sensor Science and Technology
    • /
    • v.8 no.5
    • /
    • pp.400-406
    • /
    • 1999
  • Piezoresistive flow sensors with four different types of microbeam structures were fabricated using (100), n/$n^+$/n three-layer silicon wafer and their characteristics were investigated. Piezoresistors were formed through boron diffusion and its values were about $1\;k{\Omega}$. Three-dimensional silicon microbeams were constructed by porous silicon micromachining and curled microbeams were fabricated by the difference in the thermal expansion coefficient between silicon and metal. The output response of the fabricated sensor was evaluated through half- bridge. The output voltage increased with increasing length of microbeam at the same flow velocity, while the detectable measurement range extended with decreasing length of microbeam. The output voltage of the fabricated sensors were increased with quotient of 3.2 of the flow rate since the stress of the beam versus the gas flow showed non-linear characteristics.

  • PDF

Fabrication of Stress-balanced $Si_{3}N_{4}/SiO_{2}/Si_{3}N_{4}$ Dielectric Membrane (스트레스균형이 이루어진 $Si_{3}N_{4}/SiO_{2}/Si_{3}N_{4}$ 유전체 멤브레인의 제작)

  • Kim, Myung-Gyoo;Park, Dong-Soo;Kim, Chang-Won;Kim, Jin-Sup;Lee, Jung-Hee;Lee, Jong-Hyun;Sohn, Byung-Ki
    • Journal of Sensor Science and Technology
    • /
    • v.4 no.3
    • /
    • pp.51-59
    • /
    • 1995
  • Stress-balanced flat 150 nm-$Si_{3}N_{4}$/300 nm-$SiO_{2}$/150 nm-$Si_{3}N_{4}$ dielectric membrane on silicon substrate has been fabricated. Analyses of stress-deflection and stress-temperature, and visual inspection for the strain diagnostic test patterns were performed in order to characterize stress properties of the membrane. The $SiO_{2}$ layers sandwiched between two $Si_{3}N_{4}$ layers were deposited by three different techniques(PECVD, LPCVD, and APCVD) for the purpose of investigating the dependence of stress on the deposition methods. Some extent of tensile stress in the membrane was always observed regardless of the deposition methods, however it could be balanced against silicon substrate by post-wet oxidation in $1,150^{\circ}C$. Stress-temperature characteristics of the membranes showed that APCVD-LTO was better as mid-$SiO_{2}$ layer than PECVD - or LPCVD - $SiO_{2}$ when there was no oxidation process.

  • PDF

Convergence Monitoring Technologies for Traffic Tunnels - State of the Art (터널의 내공변위 자동화 계측기술 분석)

  • Chung So-Keul
    • Tunnel and Underground Space
    • /
    • v.15 no.1 s.54
    • /
    • pp.1-8
    • /
    • 2005
  • Measurement of convergence was/is carried out manually throughout the world for tunnels under construction. However, manual method has certain limitations in terms of applicability for the tunnels in operation. This paper describes state of the art of convergence monitoring systems which are available for measuring displacement of existing tunnels. These technologies are analyzed as follows: 1 The Sofo system using the fiber optic sensors has been applied to the stress measurement of the tunnel lining. It has not yet been used for the monitoring of tunnel convergence because of its cost and reliability 2. A TPMS(Tunnel Profile Monitoring System) using tilt sensors and displacement sensors is used for the convergence monitoring of highway tunnels, subway tunnels and underground ducts. 3. A BCS(Bassett Convergence System) using a pair of tilt sensors can be used for the convergence monitoring of tunnels, however the accuracy of the measurement has to be improved because it uses AC input voltage during data acquisition. The system has to be validated before it can be applied to the tunnels in operation. Convergence monitoring systems using TPMS and/or BCS are recommended to be evaluated and improved by a series or tests in tunnels under construction in order to be applied to the main measuring section and the tunnels in operation.

The Current Methods of Landslide Monitoring Using Observation Sensors for Geologic Property (지질특성 관측용 센서를 이용한 산사태 모니터링 기법 현황)

  • Chae, Byung-Gon;Song, Young-Suk;Choi, Junghae;Kim, Kyeong-Su
    • Journal of Sensor Science and Technology
    • /
    • v.24 no.5
    • /
    • pp.291-298
    • /
    • 2015
  • There are many landslides occurred by typhoons and intense rainfall during the summer seasons in Korea. To predict a landslide triggering it is important to understand mechanisms and potential areas of landslides by the geological approaches. However, recent climate changes make difficult to predict landslide based on only conventional prediction methods. Therefore, the importance of a real-time monitoring of landslide using various sensors is emphasized in recent. Many researchers have studied monitoring techniques of landslides and suggested several monitoring systems which can be applicable to the natural terrain. Most sensors of landslide monitoring measure slope displacement, hydrogeologic properties of soils and rocks, changes of stress in soil and rock fractures, and rainfall amount and intensity. The measured values of each sensor are transmitted to a monitoring server in real-time. The ultimate goal of landslide monitoring is to warn landslide occurrence in advance and to reduce damages induced by landslides. This study introduces the current situation of landslide monitoring techniques in each country.