• Title/Summary/Keyword: stress sensing

Search Result 218, Processing Time 0.029 seconds

Ginsenoside Rg1 attenuates mechanical stress-induced cardiac injury via calcium sensing receptor-related pathway

  • Lu, Mei-Li;Wang, Jing;Sun, Yang;Li, Cong;Sun, Tai-Ran;Hou, Xu-Wei;Wang, Hong-Xin
    • Journal of Ginseng Research
    • /
    • v.45 no.6
    • /
    • pp.683-694
    • /
    • 2021
  • Background: Ginsenoside Rg1 (Rg1) has been well documented to be effective against various cardiovascular disease. The aim of this study is to evaluate the effect of Rg1 on mechanical stress-induced cardiac injury and its possible mechanism with a focus on the calcium sensing receptor (CaSR) signaling pathway. Methods: Mechanical stress was implemented on rats through abdominal aortic constriction (AAC) procedure and on cardiomyocytes and cardiac fibroblasts by mechanical stretching with Bioflex Collagen I plates. The effects of Rg1 on cell hypertrophy, fibrosis, cardiac function, [Ca2+]i, and the expression of CaSR and calcineurin (CaN) were assayed both on rat and cellular level. Results: Rg1 alleviated cardiac hypertrophy and fibrosis, and improved cardiac decompensation induced by AAC in rat myocardial tissue and cultured cardiomyocytes and cardiac fibroblasts. Importantly, Rg1 treatment inhibited CaSR expression and increase of [Ca2+]i, which similar to the CaSR inhibitor NPS2143. In addition, Rg1 treatment inhibited CaN and TGF-b1 pathways activation. Mechanistic analysis showed that the CaSR agonist GdCl3 could not further increase the [Ca2+]i and CaN pathway related protein expression induced by mechanical stretching in cultured cardiomyocytes. CsA, an inhibitor of CaN, inhibited cardiac hypertrophy, cardiac fibrosis, [Ca2+]i and CaN signaling but had no effect on CaSR expression. Conclusion: The activation of CaN pathway and the increase of [Ca2+]i mediated by CaSR are involved in cardiac hypertrophy and fibrosis, that may be the target of cardioprotection of Rg1 against myocardial injury.

Design of the High Brightness LED Driver IC with Enhanced the Output Current Control Function (출력전류 제어 기능이 향상된 고휘도 LED 구동 IC 설계)

  • Song, Ki-Nam;Han, Seok-Bung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.8
    • /
    • pp.593-600
    • /
    • 2010
  • In this paper, High brightness LED (light-emitting diodes) driver IC (integrated circuit) using new current sensing circuit is proposed. This LED driver IC can provide a constant current with high current precision over a wide input voltage range. The proposed current-sensing circuit is composed of a cascode current sensor and a current comparator with only one reference voltage. This IC minimizes the voltage stress of the MOSFET (metal oxide semiconductor field effect transistor) from the maximum input voltage and has low power consumption and chip area by using simple-structured comparator and minimum bias current. To confirm the functioning and characteristics of our proposed LED driver IC, we designed a buck converter. The LED current ripple of the designed IC is in ${\pm}5%$ and a tolerance of the average LED current is lower than 2.43%. This shows much improved feature than the previous method. Also, protections for input voltage and operating temperature are designed to improve the reliability of the designed IC. Designed LED driver IC uses 1.0 ${\mu}m$ X-Fab. BiCMOS process parameters and electrical characteristics and functioning are verified by spectre (Cadence) simulation.

Design of the High Brightness LED Driver IC with Enhanced the Output Current Control Function (출력전류 제어 기능이 향상된 고휘도 LED 구동 IC 설계)

  • Han, Seok-Bung;Song, Ki-Nam
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.9-9
    • /
    • 2010
  • In this paper, High Brightness LED driver IC using new current sensing circuit is proposed. This LED driver IC can provide a constant current with high current precision over a wide input voltage range. The proposed current-sensing circuit is composed of a cascode current sensor and a current comparator with only one reference voltage. This IC minimizes the voltage stress of the MOSFET from the maximum input voltage and has low power consumption and chip area by using simple-structured comparator and minimum bias current. The LED current ripple of the designed IC is in ${\pm}5%$ and a tolerance of the average LED current is lower than 2.43%. This shows much improved feature than the previous method. Also, protections for input voltage and operating temperature are designed to improve the reliability of the designed IC. Designed LED driver IC uses $1{\mu}m$ X-Fab. BiCMOS process parameters and electrical characteristics and functioning are verified by spectre(Cadence) simulation.

  • PDF

Fabrication of nanoporous gold thin films on glass substrates for amperometric detection of aniline

  • Lee, Keon-U;Kim, Sang Hoon;Shin, Hyung-Joon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.354.1-354.1
    • /
    • 2016
  • Nanoporous gold (NPG) is a very promising material in various fields such as sensor, actuator, and catalysis because of its high surface to volume ratio and conducting nature. In this study, we fabricated a NPG based amperometric sensor on a glass substrate by means of co-sputtering of Au and Si. During the sputtering process, we found the optimum conditions for heat treatment to reduce the residual stress and to improve adhesion between NPG films and the glass substrate. Subsequently, Si was selectively etched from Au-Si alloy by KOH solution, which forms nanoporous structures. Scanning electron microscopy (SEM) and auger electron spectroscopy (AES) were used to estimate the structure of NPG films and their composition. By employing appropriate heat treatments, we could make very stable NPG films. We tested the performance of NPG sensor with aniline molecules, which shows high sensitivity for sensing low concentration of aniline.

  • PDF

Fabrication of Carbon Nanotube Strain Sensors (카본나노튜브 스트레인 센서 제작 기술)

  • Chang, Won-Seok;Song, Sun-Ah;Kim, Jae-Hyun;Han, Chang-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.10
    • /
    • pp.773-777
    • /
    • 2009
  • In this study, the strain sensing characteristics of single-wall carbon nanotubes(SWCNTs) networks were investigated to develop a film sensor for strain sensing. The SWCNTs film are formed on flexible substrates of poly(ethylene terephthalate) (PET) using spray process. In this manner we could control the transparency and obtain excellent uniformity of the networked SWCNT film. The carbon nanotube film is isotropic due to randomly oriented bundles of SWCNTs. Using experimental results it is shown that there is a nearly linear change in resistance across the film when it is subjected to tensile stress. The results presented in this study indicate the potential of such films for high sensitive transparent strain sensors on macro scale.

Stress Analysis of a Tension Sensor with a Rubber Housing for a Fence Intrusion Detection System (고무하우징을 갖는 장력센서의 변형거동 해석)

  • Lee, Hyoung-Wook;Jang, Kwang-Keol;Huh, Hoon;Kang, Dae-Im
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.698-703
    • /
    • 2001
  • This paper is concerned with the nonlinear hyperelastic problem fur the incompressible characteristics of the rubber. Tension sensor is a strain gage type load cell element for a fence intrusion detection system and consists of the sensing part and the rubber housing. The analysis includes an elastic analysis and a hyperelastic analysis of a tension sensor for the deformed shape and variation of the maximum strain on the sensing part with respect to the vertical load. Numerical results show that the hyperelastic model is stiffer and less deformed than the elastic model. Comparing with the experimental test data, we know the hyperelastic model is the better approximation than the elastic model.

  • PDF

Design and Fabrication of Six-Degree of Freedom Piezoresistive Turbulent Water Flow Sensor

  • Dao, Dzung Viet;Toriyama, Toshiyuki;Wells, John;Sugiyama, Susumu
    • Journal of Sensor Science and Technology
    • /
    • v.11 no.4
    • /
    • pp.191-199
    • /
    • 2002
  • This paper presents the design concept, theoretical investigation, and fabrication of a six-degree of freedom (6-DOF) turbulent flow micro sensor utilizing the piezoresistive effect in silicon. Unlike other flow sensors, which typically measure just one component of wall shear stress, the proposed sensor can independently detect six components of force and moment on a test particle in a turbulent flow. By combining conventional and four-terminal piezoresistors in Si (111), and arranging them suitably on the sensing area, the total number of piezoresistors used in this sensing chip is only eighteen, much fewer than the forty eight piezoresistors of the prior art piezoresistive 6-DOF force sensor.

Regional Scale Satellite Data Sets for Agricultural, Hydrological and Environmental Applications in Zambia

  • Ngoma, Solomon
    • Proceedings of The Korean Society of Agricultural and Forest Meteorology Conference
    • /
    • 2001.06a
    • /
    • pp.43-48
    • /
    • 2001
  • Many applications in the areas of agricultural, hydrological and environmental resource management require data over very large areas and with a high imaging frequency - monitoring crop growth, water stress, seasonal wetland flooding and natural vegetation development. This precludes the use of fine resolution data (Landsat, Spot) on the grounds of cost, accessibility and low imaging frequency. Meteorological satellites have the potential to fill this need, given their very wide spatial coverage, and high repeat imaging. The Remote Sensing Unit (RSU) at the Zambia Meteorological Department routinely receives, processes and archives imagery from both Meteosat and NOAA AVHRR satellites. Here I wish to present some examples of applications of these data sets that arise from the RSU work - relationships between rainfall and vegetation development as assessed by satellite, derived information and seasonal patterns of flooding in the Barotse floodplain and the Kafue flats. I also wish to outline ways in which a more widespread use of this data by the Zambian institutions canbe achieved.

  • PDF

The cAMP/Protein Kinase A Pathway and Virulence in Cryptococcus neoformans

  • Kronstad, James W.;Hu, Guang-Gan;Choi, Jae-Hyuk
    • Mycobiology
    • /
    • v.39 no.3
    • /
    • pp.143-150
    • /
    • 2011
  • The basidiomycete fungus Cryptococcus neoformans is an important pathogen of immunocompromised people. The ability of the fungus to sense its environment is critical for proliferation and the generation of infectious propagules, as well as for adaptation to the mammalian host during infection. The conserved cAMP/protein kinase A pathway makes an important contribution to sensing, as demonstrated by the phenotypes of mutants with pathway defects. These phenotypes include loss of the ability to mate and to elaborate the key virulence factors capsule and melanin. This review summarizes recent work that reveals new targets of the pathway, new phenotypic consequences of signaling defects, and a more detailed understanding of connections with other aspects of cryptococcal biology including iron regulation, pH sensing, and stress.

Implementation of process and surface inspection system for semiconductor wafer stress measurement (반도체 웨이퍼의 스트레스 측정을 위한 공정 및 표면 검사시스템 구현)

  • Cho, Tae-Ik;Oh, Do-Chang
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.8
    • /
    • pp.11-16
    • /
    • 2008
  • In this paper, firstly we made of the rapid thermal processor equipment with the specifically useful structure to measure wafer stress. Secondly we made of the laser interferometry to inspect the wafer surface curvature based on the large deformation theory. And then the wafer surface fringe image was obtained by experiment, and the full field stress distribution of wafer surface comes into view by signal processing with thining and pitch mapping. After wafer was ground by 1mm and polished from the back side to get easily deformation, and it was heated by three to four times thermal treatments at about 1000 degree temperature. Finally the severe deformation between wafer before and after the heat treatment was shown.