• Title/Summary/Keyword: stress reduction

Search Result 2,238, Processing Time 0.035 seconds

Fabrication and characterization of hybrid AlTiSrO/rGO thin films for liquid crystal orientation (액정 배향용 하이브리드 AlTiSrO/rGO 박막 제조 및 특성 평가)

  • Byeong-Yun Oh
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.17 no.3
    • /
    • pp.155-165
    • /
    • 2024
  • A hybrid thin film was prepared by doping reduced graphene oxide (rGO) into a sol-gel solution mixed with aluminum, titanium, and strontium using a brush coating method. The annealing temperature was carried out at 160, 260, and 360℃, and the difference in oxidation reaction was observed. The sol-gel solution created during the membrane manufacturing process generates a contractile force due to the shear stress of the brush bristles, forming a microgroove structure. This structure was confirmed through scanning electron microscopy analysis, and the presence of rGO was clearly revealed. As the annealing temperature increases, the oxidation and reduction reactions on the thin film surface become more active, so the intensity of the surface mixture increases. Moreover, the electro-optical properties were stabilized and improved by increasing the intensity of the mixtures. Likewise, the voltage-capacitance values are also significantly improved. Lastly, the transmittance measurement showed that it was suitable for liquid crystal display application.

An Experimental Study on the Durability Evaluation of Polymer Cement Restoration Materials for Deteriorated Reinforced Concrete Structures (성능저하된 철근콘크리트구조물 폴리머시멘트계 보수용 단면복구재의 내구성 평가에 관한 실험적 연구)

  • Kim, Moo-Han;Kim, Jae-Hwan;Cho, Bong-Suk;Park, Jong-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.1
    • /
    • pp.123-130
    • /
    • 2006
  • The duties of the restorative materials are to bear up against stress and to protect reinforcement corrosion. So the restorative materials are estimated by various kinds of strength, permeability and etc, But, in case of existing performance evaluation of restorative materials, because various deterioration factors are separately acted, the system of performance evaluation is different from that of combined deterioration of real structure and it is difficult to evaluate the exact performance of restorative materials. In this study, to evaluate Performance of restorative materials, we compare their korea standard properties in terms of compressive and bending strength and permeability of water and air with real durability for carbonation, salt damage and actual reinforcement corrosion like ratio of corrosion area. weight reduction and corrosion velocity of steel bar under environment of combined deterioration. The results showed that strength and permeability of restorative materials are similar but their resistance to carbonation, salt damage and actual reinforcement corrosion are very different.

Structural Performance of Reinforced Concrete Shear Walls Partially Cutted for Opening (개구부 설치를 위해 인위적 손상을 가한 전단벽의 구조성능 평가)

  • Choi, Youn Cheul;Choi, Hyun Ki;Choi, Chang Sik;Lee, Li Hyung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.3
    • /
    • pp.77-86
    • /
    • 2007
  • The more demands on efficient utilization of resources, the more structural engineers prefer to select remodeling to improve old building's capacity. A series of four shear wall specimens were tested under constant axial stress and reversed cyclic lateral loading in order to evaluate the effect of the opening on the lower center of the wall induce by remodeling. Consequently, the existence of opening was verified to induce a different failure, which was caused by reduction of compression strut area formed on the wall to diagonal direction. Especially, the ultimate strength of the wall with an opening was revealed approximately 35% lower than that of the wall without an opening. And the similar results were appeared in characteristics of stiffness and energy dissipation capacity.

Fatigue Durability of Cramp Joint at Precast Highway Deck Slabs (프리캐스트 바닥판용 클램프 조인트의 피로내구성)

  • Kim, Yoon Chil
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.2
    • /
    • pp.156-162
    • /
    • 2008
  • The fatigue durability test using the actual size beam was performed with a cramp joint in order to apply to the highway bridge deck slab. Three types of beam were investigated for durability performance by considering stress conditions in real bridge deck slabs, 1) A beam with major shear force applied at the joint (RC Type) 2) A beam with major bending moments applied at the joint (PSC Type) 3) A beam with the pure shear applied at the joint. The experiment for beams with cramp joints showed that the cramp joint had enough durability for fatigue regardless of the overlaid length of the looped distribution bars under the current design strength level. Moreover, it was clarified that the enough durability for fatigue under the load repetition was achieved by increasing the joint span grater than 1.5D with the consideration of the deformation due to reduction in joint stiffness.

Catechin hydrate prevents cisplatin-induced spermatogonia GC-1 spg cellular damage

  • Hyeon Woo Shim;Won-Yong Lee;Youn-Kyung Ham;Sung Don Lim;Sun-Goo Hwang;Hyun-Jung Park
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.39 no.2
    • /
    • pp.145-152
    • /
    • 2024
  • Background: Despite its anticancer activity, cisplatin exhibits severe testicular toxicity when used in chemotherapy. Owing to its wide application in cancer therapy, the reduction of damage to normal tissue is of imminent clinical need. In this study, we evaluated the effects of catechin hydrate, a natural flavon-3-ol phytochemical, on cisplatin-induced testicular injury. Methods: Type 2 mouse spermatogonia (GC-1 spg cells) were treated with 0-100 μM catechin and cisplatin. Cell survival was estimated using a cell proliferation assay and Ki-67 immunostaining. Apoptosis was assessed via flow cytometry with the Dead Cell Apoptosis assay. To determine the antioxidant effects of catechin hydrate, Nrf2 expression was measured using qPCR and CellROX staining. The anti-inflammatory effects were evaluated by analyzing the gene and protein expression levels of iNOS and COX2 using qPCR and immunoblotting. Results: The 100 μM catechin hydrate treatment did not affect healthy GC-1 spg cells but, prevented cisplatin-induced GC-1 spg cell death via the regulation of anti-oxidants and inflammation-related molecules. In addition, the number of apoptotic cells, cleaved-caspase 3 level, and BAX gene expression levels were significantly reduced by catechin hydrate treatment in a cisplatin-induced GC-1 spg cell death model. In addition, antioxidant and anti-inflammatory marker genes, including Nrf2, iNOS, and COX2 were significantly downregulated by catechin hydrate treatment in cisplatintreated GC-1 cells. Conclusions: Our study contributes to the opportunity to reintroduce cisplatin into systemic anticancer treatment, with reduced testicular toxicity and restored fertility.

Feasibility, safety and effectiveness of the enhanced recovery after surgery protocol in patients undergoing liver resection

  • Mohamad Younis Bhat;Sadaf Ali;Sonam Gupta;Younis Ahmad;Mohd Riyaz Lattoo;Mohammad Juned Ansari;Ajay Patel;Mohd Fazl ul Haq;Shaheena Parveen
    • Annals of Hepato-Biliary-Pancreatic Surgery
    • /
    • v.28 no.3
    • /
    • pp.344-349
    • /
    • 2024
  • Backgrounds/Aims: The implementation of enhanced recovery after surgery (ERAS) protocols has demonstrated significant advantages for patients by mitigating surgical stress and expediting recovery across a spectrum of surgical procedures worldwide. This investigation seeks to assess the effectiveness of the ERAS protocol specifically in the context of major liver resections within our geographical region. Methods: Our department conducted retrospective analysis of prospectively collected data, gathered from consenting individuals who underwent liver resections from January 2018 to December 2023. The assessment encompassed baseline characteristics, preoperative indications, surgical outcomes, and postoperative complications among patients undergoing liver surgery. Results: Among the included 184 patients (73 standard care, 111 ERAS program), the baseline characteristics were similar. Median postoperative hospital stay differed significantly: 5 days (range: 3-13 days) in ERAS, and 11 days (range: 6-22 days) in standard care (p < 0.001). Prophylactic abdominal drainage was less in ERAS (54.9%) than in standard care (86.3%, p < 0.001). Notably, in ERAS, 88.2% initiated enteral feeding orally on postoperative day 1, significantly higher than in standard care (47.9%, p < 0.001). Early postoperative mobilization was more common in ERAS (84.6%) than in standard care (36.9%, p < 0.001). Overall complication rates were 21.9% in standard care, and 8.1% in ERAS (p = 0.004). Conclusions: Our investigation highlights the merits of ERAS protocol; adherence to its diverse components results in significant reduction in hospital length of stay, and reduced occurrence of postoperative complications, improving short-term recovery post liver resection.

A new dynamic construction procedure for deep weak rock tunnels considering pre-reinforcement and flexible primary support

  • Jian Zhou;Mingjie Ma;Luheng Li;Yang Ding;Xinan Yang
    • Geomechanics and Engineering
    • /
    • v.38 no.3
    • /
    • pp.319-334
    • /
    • 2024
  • The current theories on the interaction between surrounding rock and support in deep-buried tunnels do not consider the form of pre-reinforcement support or the flexibility of primary support, leading to a discrepancy between theoretical solutions and practical applications. To address this gap, a comprehensive mechanical model of the tunnel with pre-reinforced rock was established in this study. The equations for internal stress, displacement, and the radius of the plastic zone in the surrounding rock were derived. By understanding the interaction mechanism between flexible support and surrounding rock, the three-dimensional construction analysis solution of the tunnel could be corrected. The validity of the proposed model was verified through numerical simulations. The results indicate that the reduction of pre-deformation significantly influences the final support pressure. The pre-reinforcement support zone primarily inhibits pre-deformation, thereby reducing the support pressure. The support pressure mainly affects the accelerated and uniform movement stage of the surrounding rock. The generation of support pressure is linked to the deformation of the surrounding rock during the accelerated movement stage. Furthermore, the strength of the pre-reinforcement zone of the surrounding rock and the strength of the shotcrete have opposite effects on the support pressure. The parameters of the pre-reinforcement zones and support materials can be optimized to achieve a balance between surrounding rock deformation, support pressure, cost, and safety. Overall, this study provides valuable insights for predicting the deformation of surrounding rock and support pressure during the dynamic construction of deep-buried weak rock tunnels. These findings can guide engineers in improving the construction process, ensuring better safety and cost-effectiveness.

Erosion Behavior and Erodibility of MICP-Treated Sand by Wind-Induced Shear Velocity (MICP 처리한 모래의 풍력에 의한 침식 거동과 침식성)

  • Sojeong Kim;Jinung Do
    • Journal of the Korean Geosynthetics Society
    • /
    • v.23 no.3
    • /
    • pp.31-42
    • /
    • 2024
  • Coastal sand dunes are formed by the transport and deposition of sands by wind, and play a role in conserving ecosystems and safeguarding against natural disasters. While dunes possess a self-recovering ability from erosion, the ongoing reduction in coastal zones necessitates the countermeasures of coastal sand erosion. The potential of microbially induced carbonate precipitation (MICP) technology, which enhances the ground's strength and stiffness, in increasing the erosion resistance of coastal sand dunes is explored in this study. A wind tunnel testing system was used to simulate the erosion behavior of coastal dune. Untreated and MICP-treated sands were prepared for the erosion tests. Using a 3D scanner, pre- and post-wind eroded sand surfaces were surveyed. The erosion behaviors and corresponding erodibility parameters were analyzed based on the wind tunnel testing results. The level of cementation was quantified by acid-washing the treated sands. Experimental results indicated an increase in CaCO3, strength, and erosion resistance with higher MICP treatments. This study proposed a correction coefficient to correlate the shear stress by wind with the one by water. This study confirms the potential of applying MICP technology to mitigate wind-induced erosion in coastal sand dunes.

Assessment of Carsington Dam Failure by Slope Stability and Dam Behavior Analyses (사면안정 해석과 댐 거동분석을 통한 Carsington Dam 파괴의 고찰)

  • 송정락;김성인
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1991.10a
    • /
    • pp.87-102
    • /
    • 1991
  • It has been reported that the failure of Carsington Dam in Eng1and occured due to the existence of a thin yellow clay layer which was not identified during the design work, and due to pre-existing shears of the clay layer. The slope stability analyses during the design work, which utilized traditional circular arc type failure method and neglected the existence of the clay layer, showed a safety factor of 1.4. However, the post-failure analyses which utilized translational failure mode considering the clay layer and the pre-existing shear deformation revealed the reduction of safety factor to unity. The post-failure analysis assumed 10。 inclination of the horizontal forces onto each slice based on the results of finite element analyses. In this paper, Bishop's simplified method, Janbu method, and Morgenstern-Price method were used for the comparison of both circular and translational failure analysis methods. The effects of the pre-existing shears and subsquent movement were also considered by varying the soil strength parameters and the pore pressure ratio according to the given soi1 parameters. The results showed factor of safefy 1.387 by Bishop's simplified method(STABL) which assumed circular arc failure surface and disregarding yellow clay layer and pre-failure material properties. Also the results showed factor of safety 1.093 by Janbu method(STABL) and 0.969 by Morgenstern-Price method(MALE) which assumed wedge failure surface and considerd yellow clay layer using post failure material properties. In addition, dam behavior was simulated by Cam-Clay model FEM program. The effects of pore pressure changes with loading and consolidation, and strength reduction near or at failure were also considered based on properly assumed stress-strain relationship and pore pressure characteristics. The results showed that the failure was initiated at the yellow clay layer and propagated through other zones by showing that stress and displacement were concentrated at the yel1ow clay layer.

  • PDF

Growth Enhancement of Shrimp and Reduction of Shrimp Infection by Vibrio parahaemolyticus and White Spot Syndrome Virus with Dietary Administration of Bacillus sp. Mk22 (Bacillus sp. Mk22의 섭취가 Penaeus monodon 새우의 성장증진과 Vibrio parahaemolyticus와 흰반점바이러스(WSSV)의 감염 감소에 미치는 영향)

  • Sekar, Ashokkumar;Packyam, Mayavu;Kim, Keun
    • Microbiology and Biotechnology Letters
    • /
    • v.44 no.3
    • /
    • pp.261-267
    • /
    • 2016
  • The present study examined the effect of the dietary administration of a halophilic bacterium Bacillus sp. Mk22 on the growth improvement of black tiger shrimp, Penaeus monodon, and reduced shrimp infection by Vibrio parahaemolyticus and white spot syndrome virus (WSSV). The shrimp were fed 45 days using three experimental diets: no addition (control), commercial probiotic, and Bacillus sp. Mk22. The shrimp treated with the halophilic bacterium Mk22 showed a significant improvement of growth (7.1 ± 0.21 g), survival (94.3 ± 0.58%), weight gain (178 ± 4.93 g), and reduced feed conversion rate (0.8 ± 0.03 g) compared with the shrimp in the other groups. The shrimp treated with Bacillus sp. Mk22 also showed a lower Vibrio count (0.02 ± 0.01 × 102 CFU/ml) in the shrimp culture water compared with the other groups. The shrimp in the three groups were challenged with either Vibrio or WSSV. For the Vibrio infection, no mortality was observed from water infection or oral feeding infection in the commercial probiotic group and Mk 22 group. For the WSSV infection, a 68% survival rate from water infection and 20% survival rate from oral feeding infection was observed on day 45 in the Mk22 group, while 100% mortalities were recorded at a much earlier time in both the control and commercial probiotic groups. The antioxidant enzyme activities, indicators of oxidative stress, such as catalase and superoxide dismutase, significantly decreased in both the Vibrio and WSSV-infected Mk22 groups compared with the other groups, indicating that Bacillus sp. Mk22 was effective in reducing oxidative stress, possibly due to the reduced infection.