• Title/Summary/Keyword: stress reduction

Search Result 2,221, Processing Time 0.035 seconds

Changes of Tree Growth and Fruit Quality of "Yumi" Peach under Long-Term Soil Water Deficit

  • Yun, Seok Kyu;Kim, Sung Jong;Nam, Eun Young;Kwon, Jung Hyun;Chung, Kyeong Ho;Choi, In Myung;Kim, Ghiseok;Shin, Hyunsuk
    • Journal of Biosystems Engineering
    • /
    • v.42 no.4
    • /
    • pp.276-282
    • /
    • 2017
  • Purpose: This paper presents the effects of soil drought stress during the growing season and pre-harvest period on tree growth and fruit quality of "Yumi" peach, an early season cultivar. Methods: Soil drought stresses were treated with four levels of -30, -50, -60, and -70 kPa during long term (LT) and short term (ST). For LT treatments, soil water was controlled for nine weeks from May 1 to July 5, which was assumed as the full growing season. For ST treatments, soil water was controlled for four weeks from June 10 to July 5, which was assumed as the pre-harvest season. Tree growth and leaf photosynthesis were measured, and fruit characteristics such as fruit weight and diameter, soluble solid and tannin contents, and harvest date were investigated. Results: Soil water deficit treatments caused a significant reduction in tree growth, leaf photosynthesis, and fruit enlargement. LT water stress over -60 kPa during the full growing season caused significant reduction in tree growth, including shoot length, trunk girth, leaf photosynthesis, and fruit enlargement. ST water stress over -60 kPa during the pre-harvest period also induced significant reduction in leaf photosynthesis and fruit enlargement, while tree growth was not reduced. In terms of fruit quality, water stress over -50 kPa significantly reduced fruit weight, increased soluble solid and tannin contents, and delayed harvest time in both LT and ST treatments. Conclusions: As a result, it is assumed that LT water stress over -60 kPa can reduce both tree growth and fruit enlargement, whereas ST water stress over -50 kPa can reduce fruit enlargement without reducing tree growth. From an agricultural perspective, moderate water deficit like -50 kPa treatments could have positive effects, such increased fruit soluble solid contents along with minimal reduction in fruit size.

Transferred Load Reduction effect on Paved Track Roadbed with Low Elastic Base Plate Pad (포장궤도에서의 저탄성패드 적용에 따른 전달하중 저감 효과)

  • Lee, Il-Wha;Kim, Eun;Kim, Chang-Hwan
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.1230-1235
    • /
    • 2011
  • The track stiffness is determined by the pad stiffness. Low elastic pad is the most effective track component on the basis of stress-displacement characteristics, dynamic response and fatigue characteristics. It is more important in case of concrete track. The main objective of this paper is to confirm the reduction effect of train load, which transfer to roadbed through track. To achieve this object, numerical analysis and real scale repeated loading test was performed. The load reduction effect of low elastic pad was analyzed by using displacement, stress and strain ratio of the paved track at each point.

  • PDF

Isolation and characterization of thioredoxin and NADPH-dependent thioredoxin reductase from tomato (Solanum lycopersicum)

  • Dai, Changbo;Wang, Myeong-Hyeon
    • BMB Reports
    • /
    • v.44 no.10
    • /
    • pp.692-697
    • /
    • 2011
  • To investigate the pathways of oxidoreductases in plants, 2 key components in thioredox systems i.e. thioredoxin h (Trx h) and NADPH-dependent thioredoxin reductase (NTR) genes were first isolated from tomatoes (Solanum lycopersicum). Subsequently, the coding sequences of Trx h and NTR were inserted into pET expression vectors, and overexpressed in Escherichia coli. In the UV-Visible spectra of the purified proteins, tomato Trx h was shown to have a characteristic 'shoulder' at ~290 nm, while the NTR protein had the 3 typical peaks unique to flavoenzymes. The activities of both proteins were demonstrated by following insulin reduction, as well as DTNB reduction. Moreover, both NADPH and NADH could serve as substrates in the NTR reduction system, but the catalytic efficiency of NTR with NADPH was 2500-fold higher than with NADH. Additionally, our results reveal that the tomato Trx system might be involved in oxidative stress, but not in cold damage.

Heat Treatment of Stator Core in Permanent Magnet Type Motor for Reduction of Friction Torque and Analysis of Their Cause (영구자석형 모터의 프릭션 토크 저감을 위한 고정자 철심의 열처리 및 발생원 분석)

  • Ha, Kyung-Ho;Lim, Yang-Su;Kwon, Oh-Yeoul;Kim, Ji-Hyun;Kim, Jae-Kwan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.10
    • /
    • pp.1752-1758
    • /
    • 2008
  • This paper deals with the reduction of friction torque in permanent magnet motors by using the heat treatment of stator core. The stator core is made of electrical steel sheared by the punching die. From the punching process, large mechanical stress acting on the edge of stator tooth induces significant plastic and elastic deformation and then cause the change of magnetization properties. Then, the mechanical and magnetic unbalance in the sheared region of stator tooth produced by material cutting has influence on the friction torque. This paper investigated the effect of the punching process on the magnetization process and the mechanical deformation, and then proposed the stress relief annealing method for the reduction of friction torque among one of motor characteristics.

Heat Treatment of Stator Core for Reduction of DC-Bias of Cogging Torque (코깅토크 DC성분 저감을 위한 모터 철심 열처리)

  • Ha, Kyung-Ho;Kim, Ji-Hyun;Kwon, Oh-Yeoul;Kim, Jae-Kwan;Lim, Yang-Su
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.695-696
    • /
    • 2008
  • This paper deals with the reduction of DC component of cogging toruqe by using the heat treatment of the stator core. The stator core is made of electrical steel sheared by the punching die. From the punching process, large mechanical stress at the edge of stator tooth induces significant plastic and elastic deformation and influences magnetic properties. Then, these phenomenon in the sheared region has influence on the magnetic unbalance in the air-gap of motor. This paper investigated the effect of the punching process on the magnetization process and the mechanical deformation and proposed the stress relief annealing method for the reduction of friction torque among one of motor characteristics.

  • PDF

Analysis of the Vibration Fatigue for the Diesel Engine and Reduction Gear Connecting Shaft in a Ship (선박용 감속기어-디젤엔진 연결축의 진동 피로파손 분석)

  • Han, HyungSuk;Lee, KyungHyun;Park, Sungho;Kim, ChungSik
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.5
    • /
    • pp.407-413
    • /
    • 2014
  • The diesel engine and reduction gear combination is one of the common propulsion system in a naval vessel. Since the diesel engine has torsional vibration caused by reciprocating motion of the mass and gas pressure force of the cylinder, high cycle torsional fatigue can be occurred. Therefore, ROK navy restricts the maximum stress of the propulsion shaft according to MIL G 17859D. In this paper, the root cause for the failure of the diesel engine and reduction gear connecting shaft occurred in typical naval vessel is investigated based on the measured bending and torsional moment according to MIL G 17859D procedure.

Viscous Frictional Drag Reduction by Diffusion of Injecting Micro-Bubbles (미소 기포 분포의 난류 확산에 의한 점성 마찰력 저감)

  • Moon, Chul-Jin;Kim, Si-Young
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.30 no.2
    • /
    • pp.109-115
    • /
    • 1994
  • This paper presents a new concept to reduce turbulent frictional drag by injecting micro-bubble into near the buffer layer of turbulent boundary layer on flat plate. The concentrations of micro bubble distribution in the boundary was calculater by eddy viscosity equations in the governing equations. When near region of the buffer layer of turbulent boundary layer is filled with micro-bulle of air and viscous of the region is kept low, the velocity profile in the near region should be changed substantially. Then the Reynolds stress in the region becomes less, which guide to lower velocity gradient there. It results in reduction of velocity gradient at the viscous sublayer, which gives the reduction of shear stress at the wall.

  • PDF

Reduction of Skin Friction Force for Turbulent Boundary Layer (난류 경계층의 표면 마찰력 감소화)

  • Kim, Si-Young
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.5 no.2
    • /
    • pp.128-137
    • /
    • 1993
  • This paper presents a new concept to reduce turbulent frictional drag by injecting micro-bubble into buffer layer of turbulent boundary layer on flat plate. The buffer layer of boundary was specified by minus velocity gradient of law of the wall. When the buffer layer region of turbulent boundary layer is filled with micro-bubble of air and viscous of the region is kept low, the velocity profile in the region should be changed substantially. Then the Reynolds stress in the buffer layer region becomes less, which guide to higher velocity gradient there. It results in reduction of velocity gradient at the viscous sublayer, which gives the reduction of shear stress at the wall.

  • PDF

The Study for Reduction of Stress Concentration at the Stepped Shaft According to Two Types of External Force (하중 종류에 따른 다단축의 응력 집중 완화에 대한 연구)

  • Park, I.S.;Shim, J.J.
    • Journal of Power System Engineering
    • /
    • v.14 no.1
    • /
    • pp.47-52
    • /
    • 2010
  • In this study, Finite Element Analysis have been adopted to analyze reducing stress effect and used to induce the sensitivity of design parameter on various techniques which was used for reducing stress. And so it can be utilized as a data to design on similar model. The effect of reducing stress with respect to change of relief groove radius can be increased by 27.3~18.2 % more than radius of fillet. And if a shoulder fillet radius is larger, additional reducing stress by relief groove radius is not obtained. And there was only little effect on reducing stress by changing the center point of groove radius along horizontal direction. In the case that undercut radius is 1.5mm, Max. Equivalent stress is reduced by 5.71% under bending force and 11.11% under torsion. The best effect of reducing stress at undercut model was yielded when the undercut radius is a forth of difference of stepped shaft radius.

Interfacial Stress Concentrations of Vertical Through-plate to H-beam Connections in CFT Column

  • Choi, Insub;Chang, HakJong;Kim, JunHee
    • International Journal of High-Rise Buildings
    • /
    • v.9 no.4
    • /
    • pp.325-334
    • /
    • 2020
  • This paper aims to evaluate the interfacial stress concentrations on connection between vertical through-plate and H-beam in CFT column. Full-scale experiments were performed on three specimens with varying thickness of the vertical through-plate to investigate the interfacial stress concentration factor in the connections. The specimens underwent brittle failure at the location where the steel beam is connected to the vertical through-plate before the steel beam reached its plastic moment. The strain data of the part were analyzed, and the sectional analyses were conducted to determine appropriate residual stress models. In addition, the stress concentration factor was quantified by comparing the analytical local behavior in which the stress concentration is not reflected and the experimental data reflecting the stress concentration. The results showed that the maximum reduction of the stress concentration factor due to an increase in the thickness of the vertical through-plate is 50.3%.