• Title/Summary/Keyword: stress intensity factor

Search Result 1,224, Processing Time 0.033 seconds

A Study for Mutual Interference between Symmetric Circular Inclusion and Crack in Finite Width Plate by Boundary Element Method (경계요소법에 의한 유한폭 판재내의 대칭 원형함유물과 균열의 상호간섭에 대한 연구)

  • Park, S.O.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.8
    • /
    • pp.137-145
    • /
    • 1997
  • A two-dimensional program for the analysis of bimaterial inclusion has been developed using the bound- ary element method. In order to study the effects of circular inclusion on the stress field of the crack tip, numerical analysis was performed for the straight crack of finite length around the symmetric circular inclusion whose modulus of elasticity was different from that of the matrix material. In the case of inclusion whose stiffness was smaller than that of the matrix material, the stress intensity factor was found to increase as the crack enamated. The stress intensity factor was uninfluenced from the radial change in inclusion and remained constant for the stiffness equivalent to the matrix materials, where as it decreased for the inclusion with larger stiffness. For the vareation in the distance of the inclusion, a small increase in the stress intensity factor was observed for the case with small or equal stiffness compared with the matrix materials. The inclusion with larger stiffness showed a gradual decrease in the strss intensity factor as the crack emanated.

  • PDF

Stress Intensity factor Calculation for the Axial Semi-Elliptical Surface Flaws on the Thin-Wall Cylinder Using Influence Coefficients (영향계수를 이용한 원통용기 축방향 표면결함의 응력확대계수의 계산)

  • Jang, Chang-Heui;Moon, Ho-Rim;Jeong, Ill-Seok;Kim, Tae-Ryong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.11
    • /
    • pp.2390-2398
    • /
    • 2002
  • For integrity analysis of nuclear reactor pressure vessel, including the Pressurized thermal shock analysis, the fast and accurate calculation of the stress intensity factor at the crack tip is needed. For this, a simple approximation scheme is developed and the resulting stress intensity factors for axial semi-elliptical cracks in cylindrical vessel under various loading conditions are compared with those of the finite element method and other approximation methods, such as Raju-Newman's equation and ASME Sec. Xl approach. For these, three-dimensional finite-element analyses are performed to obtain the stress intensity factors for various surface cracks with t/R = 0.1. The approximation methods, incorporated in VINTIN (Vessel INTegrity analysis-INner flaws), utilizes the influence coefficients to calculate the stress intensity factor at the crack tip. This method has been compared with other solution methods including 3-D finite clement analysis for internal pressure, cooldown, and pressurized thermal shock loading conditions. The approximation solutions are within $\pm$2.5% of the those of FEA using symmetric model of one-forth of a vessel under pressure loading, and 1-3% higher under pressurized thermal shock condition. The analysis results confirm that the VINTIN method provides sufficiently accurate stress intensity factor values for axial semi-elliptical flaws on the surface of the reactor pressure vessel.

Analysis on the Fatigue Crack Propagation of Weld Toe Crack through Residual Stress Field (잔류응력장을 전파하는 용접 토우부 균열의 전파해석)

  • 김유일;전유철;강중규;한종만;한민구
    • Journal of Welding and Joining
    • /
    • v.18 no.5
    • /
    • pp.33-40
    • /
    • 2000
  • Fatigue crack propagation life of weld toe crack through residual stress field was estimated with Elber's crack concept. Propagation of weld toe crack is heavily influenced by residual stress caused by welding process, so it is essential to take into account the effect of residual stress on the propagation life of weld toe crack. Fatigue crack at transverse and longitudinal weld toe was studied respectively, which represent typical weld joint in ship structure. Numerical and experimental studies are performed for both cases. Residual stress near weldment was estimated through nonlinear thermo-elasto-plastic finite element method, and residual stress intensity factor with Glinka's weight function method. Effective stress intensity factor was calculated with Newman-Forman-de Koning-Henriksen equation which is based on Dugdale strip yield model in estimating crack closure level U at different stress ratio. Calculated crack propagation life coincided well with experimental results.

  • PDF

A Study on the Dynamic Stress Intensity Factor of Orthotropic Materials(II) A Study on the Stress Field, Displacement Field and Energy Release Rate in the Dynamic Mode III under Constant Crack Propagation Velocity (직교 이방성체의 동적 응력확대계수에 관한 연구 (II) 등속균열전파 속도하에서 동적모드 III 상태의 응력장, 변위장, 에너지해방률에 관한 연구)

  • 이광호;황재석;최선호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.2
    • /
    • pp.331-341
    • /
    • 1993
  • The propagating crack problems under dynamic antiplane mode in orthotropic material is studied in this paper. To analyze the dynamic fracture problems by theoretical method or experimental method in orthotropic material, it is important to know the dynamic stress intensity factor in the vicinity of crack tip. Therefore the dynamic stress field and dynamic displacement field with dynamic stress intensity factor of orthotropic material in mode III were derived. When the crack propagation speed approachs to zero, the dynamic stress components and dynamic displacement components derived in this paper are identical to the those of static state. In addition, the relationships between dynamic stress intensity factor and dynamic energy release rate are determined by using the concept of crack closure energy with the dynamic stresses and dynamic displacements derived in this paper. Finally, the characteristics of crack propagation are studied with the properties of orthotropic material and crack speed. The variation of angle .alpha. between fiber direction and crack propagating direction and crack propagation speed fairly effect on stress component and displacement component in crack tip. The influence of crack propagation speed on the speed on the stress and displacement is greater in the case of .alpha.=90.deg. than in the case of .alpha.=0.deg. and the faster the crack propagation speed, the greater the stress value and displacement value.

THE SINGULARITIES FOR BIHARMONIC PROBLEM WITH CORNER SINGULARITIES

  • Woo, Gyungsoo;Kim, Seokchan
    • East Asian mathematical journal
    • /
    • v.36 no.5
    • /
    • pp.583-591
    • /
    • 2020
  • In [8, 9] they introduced a new finite element method for accurate numerical solutions of Poisson equations with corner singularities. They consider the Poisson equations with corner singularities, compute the finite element solutions using standard Finite Element Methods and use the extraction formula to compute the stress intensity factor(s), then they posed new PDE with a regular solution by imposing the nonhomogeneous boundary condition using the computed stress intensity factor(s), which converges with optimal speed. From the solution they could get an accurate solution just by adding the singular part. The error analysis was given in [5]. In their approaches, the singular functions and the extraction formula which give the stress intensity factor are the basic elements. In this paper we consider the biharmonic problems with the cramped and/or simply supported boundary conditions and get the singular functions and its duals and find properties of them, which are the cornerstones of the approaches of [8, 9, 10].

Evaluation of Stress Intensity Factor after Penetration of Plate with Long Surface Crack (긴 표면균열재의 관통후 응력확대계수 평가)

  • Nam Kiwoo;Lee Jongrark
    • Journal of the Korean Institute of Gas
    • /
    • v.4 no.1 s.9
    • /
    • pp.33-39
    • /
    • 2000
  • Stress intensity factor after penetration was discussed experimentally using long surface pre-cracked specimens of aluminum alloy 5083. The propagation behavior evaluation of long surface crack by equation proposed at penetration of short surface crack could be need modification to evaluate precisely because the error was high as aspect ratio is little. The modification of stress intensity factor with consideration of aspect ratio at penetration of long surface crack can be analyzed the behavior of crack penetration quantitatively.

  • PDF

Boundary Element Evaluation of Stress Intensity Factor for Interface Crack in Elastic and Viscoelastic Composite Materials (경계요소법에 의한 탄성-점탄성 복합구조체의 계면균열 해석)

  • 이상순;김정규;황종근
    • Computational Structural Engineering
    • /
    • v.9 no.1
    • /
    • pp.85-91
    • /
    • 1996
  • The focus of the present work is on the computation of the stress intensity factor for the crack at the elastic-viscoelastic bimaterial interface. First, the stress intensity factor for an interface crack in dissimilar elastic and viscoelastic materials is dervied by applying the correspondence principle to associated elastic expression. Then the time-domain boundary element analysis is performed to calculate the stress intensity factor. Numerical results show that the proposed method is very useful for the analysis of the interface crack in elastic and viscoelastic materials.

  • PDF

Fatigue Crack Growth Behavior for Rail Steel under Mixed Mode Variable Amplitude Loading (혼합모드 변동하중하에서 레일강의 피로균열 진전거동)

  • Sohn, Kyoung-Ju;Seo, Young-Bum;Kim, Chul-Su;Kim, Jung-Kyu
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.261-266
    • /
    • 2003
  • The growth behavior of the transverse crack, which was one of the most dangerous damages of rail defects, was investigated under mode I and mixed mode loading in rail steel. In the case of variable amplitude loading, the fatigue crack growth behavior was discussed using characteristic stress intensity factor ranges ${\Delta}_{rms}$. In addition, characteristic comparative stress intensity factor ranges ${\Delta}_{V,rms}$ was proposed to evaluate the quantitative effects of the variable amplitude under mixed mode loading. As a result, crack growth rate under variable amplitude loading was faster than that under constant amplitude loading.

  • PDF

Simulate of edge and an internal crack problem and estimation of stress intensity factor through finite element method

  • Yaylaci, Murat
    • Advances in nano research
    • /
    • v.12 no.4
    • /
    • pp.405-414
    • /
    • 2022
  • In this study, the elastic plane problem of a layered composite containing an internal or edge crack perpendicular to its boundaries in its lower layer is examined using numerical analysis. The layered composite consists of two elastic layers having different elastic constants and heights. Two bonded layers rest on a homogeneous elastic half plane and are pressed by a rigid cylindrical stamp. In this context, the Finite Element Method (FEM) based software called ANSYS is used for numerical solutions. The problem is solved under the assumptions that the contacts are frictionless, and the effect of gravity force is neglected. A comparison is made with analytical results in the literature to verify the model created and the results obtained. It was found that the results obtained from analytical formulation were in perfect agreements with the FEM study. The numerical results for the stress-intensity factor (SIF) are obtained for various dimensionless quantities related to the geometric and material parameters. Consequently, the effects of these parameters on the stress-intensity factor are discussed. If the FEM analysis is used correctly, it can be an efficient alternative method to the analytical solutions that need time.

Finite element analysis of corner cracked aluminum panels repaired with bonded composite patch

  • Abdelkader Boulenouar;Mohammed A. Bouchelarm;Noureddine Benseddiq
    • Steel and Composite Structures
    • /
    • v.49 no.3
    • /
    • pp.271-280
    • /
    • 2023
  • In this study, the three-dimensional finite element method is used to analyze the behavior of corner cracks in finite-thickness plates repaired with a composite patch. The normalized stress intensity factor at the crack front is used as fracture criterion. Comparison of stress intensity factor values at the internal and external positions of repaired quarter-elliptical corner crack was done, for three repair techniques. The influence of mechanical and geometrical properties of the adhesive layer and the composite patch on the variation of the stress intensity factor (SIF) at the crack-front was highlighted. The obtained results show that the application of double patch leads to a remarkable reduction of SIF at the crack front, compared to facial and lateral repairs.