• Title/Summary/Keyword: stress intensity factor

Search Result 1,224, Processing Time 0.03 seconds

Fatigue Fracture Characteristics by Corrosion Degradation of 12Cr Alloy Steel (12Cr합금강의 부식열화에 의한 피로파괴 특성)

  • Jo, Seon-Yeong;Kim, Cheol-Han;Bae, Dong-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.6
    • /
    • pp.996-1003
    • /
    • 2001
  • In order to investigate the fatigue fracture characteristics by corrosion degradation of 12Cr alloy steel, both the fatigue characteristics in air of them artificially degraded during long period and the corrosion fatigue characteristics were experimentally evaluated in various environments which were determined from electro-chemical polarization tests. And also, their fracture mechanisms were analyzed and compared, fractographyically. From their results, the fracture mechanical characteristics of it artificially degraded during long period in the distilled water, 3.5 wt.% NaCl solution and 12.7wt.%(1M) Na$_2$SO$_4$solution of 25, 60 and 90$\^{C}$ did not show distinguishable difference comparing with non-corroded one in regardless of temperature and degradation period. It means that degradation of the material by just surface corrosion does not remarkably affect to fatigue crack growth. On the other hand, the crack growth rates by corrosion fatigue increased due to activity increase of corrosive factors such as OH(sub)-,Cl(sup)- and SO$_4$(sup)- at the crack tip with temperature increase. Therefore, the crack growth rates by corrosion fatigue were more faster than that in air of the artificially degraded specimen due to the such difference of crack growth mechanism.

Mode III Fracture Toughness of Single Layer Graphene Sheet Using Molecular Mechanics (분자역학을 사용한 단층 그래핀 시트의 모드 III 파괴인성)

  • Nguyen, Minh-Ky;Yum, Young-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.2
    • /
    • pp.121-127
    • /
    • 2014
  • An atomistic-based finite bond element model for predicting the tearing mode (mode III) fracture of a single-layer graphene sheet (SLGS) is developed. The model uses the modified Morse potential for predicting the maximum strain relationship of graphene sheets. The mode III fracture of graphene under out-of-plane shear loading is investigated with extensive molecular mechanics simulations. Molecular mechanics is used for describing the displacements of atoms in the area near a crack tip, and linear elastic fracture mechanics is used outside this area. This work shows that the molecular mechanics method can provide a reliable and yet simple method for determining not only the shear properties of SLGS but also its mode III fracture toughness in the armchair and the zigzag directions; the determined mode III fracture toughness values of SLGS are $0.86MPa{\sqrt{m}}$ and $0.93MPa{\sqrt{m}}$, respectively.

Evaluation of Delamination for Fiber Reinforced Metal Laminates Using a Pseudo Crack Model (가균열 모델을 이용한 섬유강화 금속적층재의 층간분리 평가법)

  • Song, Sam-Hong;Kim, Cheol-Woong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.2
    • /
    • pp.174-180
    • /
    • 2004
  • If Fiber Reinforced Metal Laminates(FRMLs) were delaminated, the decrease of stiffness and fiber bridging effect would result in the sudden aggravation of fatigue characteristics. It was reported that the delamination of FRMLs resulted from the crack of metal layers and that it depended on the crack growth. While cracks were made in FRMLs containing a saw-cuts under fatigue loading, cracks could be produced or not in FRMLs with circular holes under the same condition. When the FRMLs with the circular holes produce not the crack but the delamination, it is not possible to analyze it by the conventional fracture parameters expressed as the function of the crack. And so, this research suggests a new analytical model of the delamination to make the comparison of the delamination behavior possible whenever the cracks occur or not. Therefore, a new analytical model called Pseudo Crack Model(PCM) was suggested to compare the delaminations whether cracks were made or not. The relationship between the crack energy consumption rate( $E_{crack}$) and the delamination energy consumption rate( $E_{del}$) was discussed and it was also known that the effect of $E_{del}$ was larger than that of $E_{crack}$.

Development of an Elastic Analysis Technique Using the Mixed Volume and Boundary Integral Equation Method (혼합 체적-경계 적분방정식법을 이용한 탄성해석 방법 개발)

  • Lee, Jeong-Gi;Heo, Gang-Il;Jin, Won-Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.4
    • /
    • pp.775-786
    • /
    • 2002
  • A Mixed Volume and Boundary Integral Equation Method is applied for the effective analysis of elastic wave scattering problems and plane elastostatic problems in unbounded solids containing general anisotropic inclusions and voids or isotropic inclusions. It should be noted that this newly developed numerical method does not require the Green's function for anisotropic inclusions to solve this class of problems since only Green's function for the unbounded isotropic matrix is involved in their formulation for the analysis. This new method can also be applied to general two-dimensional elastodynamic and elastostatic problems with arbitrary shapes and number of anisotropic inclusions and voids or isotropic inclusions. In the formulation of this method, the continuity condition at each interface is automatically satisfied, and in contrast to finite element methods, where the full domain needs to be discretized, this method requires discretization of the inclusions only. Finally, this method takes full advantage of the pre- and post-processing capabilities developed in FEM and BIEM. Through the analysis of plane elastostatic problems in unbounded isotropic matrix with orthotropic inclusions and voids or isotropic inclusions, and the analysis of plane wave scattering problems in unbounded isotropic matrix with isotropic inclusions and voids, it will be established that this new method is very accurate and effective for solving plane wave scattering problems and plane elastic problems in unbounded solids containing general anisotropic inclusions and voids/cracks or isotropic inclusions.

Assessment of the Risks of Occupational Diseases of the Passenger Bus Drivers

  • Golinko, Vasyl;Cheberyachko, Serhiy;Deryugin, Oleg;Tretyak, Olena;Dusmatova, Olga
    • Safety and Health at Work
    • /
    • v.11 no.4
    • /
    • pp.543-549
    • /
    • 2020
  • Background: The working conditions of bus drivers are difficult; they lead to occupational diseases and require careful study, particularly in Ukraine. The objective of the article is the description of occupational health risks of passenger bus drivers that lead to deteriorating health. Methods: The risk assessment was performed using a modified Risk Score method, which allowed determining the generalized level of danger to the driver's health. The hygienic hazards level was assessed as based on Stevenson's law, which was generalized later. Results: Based on the modification of the Risk Score method, it was possible to depart from expert assessments method of the risk level and calculate the general indicator based on the degree of dependence of the impact on the human body on its intensity, proposed by V. Minko. This allows objective determining of the impact of hygiene hazards on the health of the driver and to predict the occurrence of occupational diseases associated with the cardiovascular system, musculoskeletal system, and partial or complete disability due to the accumulation of emotional fatigue. The hazard assessment was carried out for three brands of passenger buses common in Ukraine, in which the driver is exposed to the dangers of fever, vibration, noise, harmful impurities in the bus cabin, and emotional load. Conclusion: The health of drivers in the cabins of passenger buses is most affected by hygiene hazards: fever, vibration, and emotional stress. The generalized level of risk is calculated by the modified method of Risk Score is 0.83; -0.99, -0.92 respectively.

Research on depression and emergency detection model using smartphone sensors (스마트폰 센서를 통한 우울증 탐지 및 위급상황 탐지 모델 연구)

  • Mingeun Son;Gangpyo Lee;Jae Yong Park;Min Choi
    • Smart Media Journal
    • /
    • v.12 no.3
    • /
    • pp.9-18
    • /
    • 2023
  • Due to the deepening of COVID-19, high-intensity social distancing has been prolonged and many social problems have been cured. In particular, physical and psychological isolation occurred due to the non-face-to-face system and a lot of damage occurred. The various social problems caused by Corona acted as severe stress for all those affected by Corona 19, and eventually acted as a factor threatening mental health such as depression. While the number of people suffering from mental illness is increasing, the actual use of mental health services is low. Therefore, it is necessary to establish a system for people suffering from mental health problems. Therefore, in this study, depression detection and emergency detection models were constructed based on sensor information using smartphones from depressed subjects and general subjects. For the detection of depression and emergencies, VAE, DAGMM, ECOD, COPOD, and LGBM algorithms were used. As a result of the study, the depression detection model had an F1 score of 0.93 and the emergency situation detection model had an F1 score of 0.99. direction.

Evaluation of Rice Nitrogen Utilization Efficiency under High Temperature and High Carbon Dioxide Conditions

  • Hyeonsoo Jang;Wan-Gyu Sang;Yun-Ho Lee;Hui-woo Lee;Pyeong Shin;Dae-Uk Kim;Jin-Hui Ryu;Jong-Tak Youn
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.168-168
    • /
    • 2022
  • According to the 5th Climate Change Report, global average temperature in 2081~2100 will increase 1.8℃ based on RCP 4.5 and 3.7℃ based on RCP 8.5 from the current climate value (IPCC Working Group I AR5). As temperature is expected to increase due to global warming and the intensity and frequency of rainfall are expected to increase, damage to crops is expected, and countermeasures must be taken. This study intends to evaluate rice growth in terms of nitrogen utilization efficiency according to future climate change conditions. In this experiment, Oryza sativa cv. Shindongjin were planted at the SPAR facility of the NICS in Wanju-gun, Jeollabuk-do on June 10, and were planted and grown according to the standard cultivation method. Cultivation conditions are high temperature, high CO2 (current temperature+4.7℃·CO2 800ppm), high temperature (current temperature+4.7℃·CO2 400ppm), current climate (current tempreture·CO2 400 ppm). Nitrogen was varied as 0, 9, 18 kg/10a. The N content and C/N ratio of all rice leaves, stems, and seeds increased at high temperature, and the N content and C/N ratio decreased under high temperature and high CO2 conditions com pared to high temperature. Compared to the current climate, NUE increases by about 8% under high temperature and high CO2 conditions and by about 2% under high temperature conditions. This seems to be because the increase in temperature and CO2 induced the increase in biomass. ANUE related to yield decreased by about 70% compared to the current climate under high temperature conditions, and decreased by about 45% at high temperature and high CO2, showing a tendency to decrease compared to high temperature. This appears to be due to reduced fertility and poor ripening due to high temperature stress. However, as the nitrogen increased, the number of ears and the number of grains increased, slightly offsetting the production reduction factor.

  • PDF

Evaluation of Corrosion Fatigue Crack Propagation Characteristics at Equivalent Potential of Zinc Sacrificial Anode (아연(Zn)희생양극 등가전위에서 부식피로균열 진전특성에 관한 연구)

  • Won Beom Kim
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.1
    • /
    • pp.363-368
    • /
    • 2024
  • Steel structures used in marine environments, such as ships, offshore structures or sub-structures in wind power generation facilities are prone to corrosion. In this study, the corrosion fatigue crack propagation characteristics due to the environmental load are examined by experiment at -1050 mV vs. SCE, which is equivalent to the anti-corrosion potential of zinc anodes that are widely used as sacrificial anodes. In this study, for this purpose, an experimental study is conducted on the effect of cathodic protection on the propagation of fatigue cracks in the seawater environment under the condition of -1050 mV vs. SCE, considering the wave period in synthetic seawater. Cathodic protection prevents corrosion; however, excessive protection generates hydrogen through chemical reactions as well as calcareous deposits. The fatigue crack propagation rate appeared to be faster than the rate in a seawater corrosion environment at the early stages of the experiment. As the crack length and stress intensity factor K increased, the crack propagation rate became slower than the fatigue crack propagation rate in seawater. However, the crack growth rate was faster than that in the atmosphere.

Analysis of the Thermal Environment in the Laying House (산란계사내부 열환경 분석)

  • Kim Y. B.;Lee S. K.;Kim S. T.;La W. J.;Chang H. H.
    • Journal of Animal Environmental Science
    • /
    • v.11 no.3
    • /
    • pp.177-188
    • /
    • 2005
  • In this study, the thermal environmental factors in a layer f(arm such as dry bulb temperature, relative humidity, black globe temperature and illumination intensity were measured and analyzed to serve as basis for effective design and plan of poultry houses. The correlation analysis between the different factors was also done. Heat Index as measure of the thermal stress was also calculated and analyzed. A $1,000m^2$ laying house, 4 meters high with 52,000 layers in six-stage type cages was used in the measurement of the different environmental parameters. The results were as follows; 1. The temperature of the inside air and materials was directly related to the increase in aerial temperature based on the dry-bulb, black globe temperature reading. The correlation factor of the outside to inside air based on dry bulb setting was very significant at 0.927 The dry bulb temperature for inside temperature ranged from $19.9\~28.8^{\circ}C\;with\;SD+2.2^{\circ}C$ while that of the outside air was $16.2\~33.1^{\circ}C,\;SD+3.5^{\circ}C$. In addition, the temperature of the inside air was very stable. 2. The black globe temperature of the inside air ranged from $20.1\~28.8^{\circ}C,\;SD+2.3^{\circ}C$ while that of the outside air was $16.2\~47.5^{\circ}C,\;SD+6.0^{\circ}C$. 3. The relative humidity of the outside and inside air was $72.4\~100\;and\;50.2\~85.6\%$ with an average of $89.2\;and\;71.7\%$, respectively. 4. The illumination intensity in the laying house was less than 7 lux, with an average of $1.2\~2.5lux$ relative to height indicating that the laying house was well isolated from outside radiation. 5. The heat index of the inside air of the laying house had a high variation from $20.5^{\circ}C,\;SD+2.5^{\circ}C$ while that of the outside air was $13.1\~45.5^{\circ}C$, with an average of $21.6^{\circ}C,\;SD+6.3^{\circ}C$.

  • PDF

The Effect of the Replacement of Grinded Fly Ash according to Curing Temperature on Repair Mortar Based on Polymer Admixture (폴리머수지 기반 보수모르타르에서 양생온도에 따른 미분쇄된 플라이애시 치환율의 영향)

  • Sim, Jae-Il;Mun, Ju-Hyun;Yun, In-Gu;Jeon, Young-Su
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.4
    • /
    • pp.116-124
    • /
    • 2015
  • The objective of this study is to evaluate the effects of the replacement levels of grinded fly-ash on the repaired mortar based on a polymer. The main parameters are the curing temperature and replacement levels of grinded fly-ash. The curing temperature and the replacement levels of grinded fly-ash are varied at $40^{\circ}C$, $20^{\circ}C$ and $5^{\circ}C$, and between 0% and 35% of the total binder by weight, respectively. The flow in fresh mortar and compressive strengths according to ages, the relationship of stress-strain, elastic modulus and modulus rupture in hardened mortar, as well as scanning the electron microscopy and the X-ray diffraction of mortar, were measured, respectively. The test results showed that the flow, elastic modulus and modulus rupture are great in mortar specimens with 20~30% of the replacement levels of grinded fly-ash. In addition, compressive strengths according to ages were affected by the replacement levels of grinded fly-ash and the curing temperature indicated that the strength development ratio of mortar with 20% of the replacement levels of grinded fly-ash was greater than others. In the prediction of the compressive strength specified by the ACI 209 code, the strength development at an early and late age can be generalized by the functions of the replacement levels of grinded fly-ash and the curing temperature. In the analysis of scanning the electron microscopy and the X-ray diffraction, the number and intensity of peaks increased and the form of CSH gels on the surface of the particle of grinded fly-ash was observed.