• Title/Summary/Keyword: stress gene

Search Result 1,283, Processing Time 0.021 seconds

Tail-to-Head Tandem Duplication and Simple Repetitive Sequences of the Cytoplasmic Actin Genes in Greenling Hexagrammos otakii (Teleostei; Scorpaeniformes)

  • Lee, Sang-Yoon;Kim, Dong-Soo;Nam, Yoon-Kwon
    • Fisheries and Aquatic Sciences
    • /
    • v.14 no.4
    • /
    • pp.303-310
    • /
    • 2011
  • We characterized a cytoplasmic actin gene locus in greenling Hexagrammos otakii (Scorpaeniformes). Genomic clones isolated from the greenling DNA library contained two homologous cytoplasmic actin gene copies (HObact2.1 and HObact2.2) in a tail-to-head orientation. Their gene structure is characterized by six translated exons and one non-translated exon. Exon-intron organization and the nucleotide sequences of the two actin gene isoforms are very similar. However, only the HObact2.1 isoform contains microsatellite-like, dinucleotide repeats in the 5'-flanking region (named HOms2002) and intron 1 following the non-translated exon 1 (named HOms769). One microsatellite locus (HOms769) was highly polymorphic while the other (HOms2002) was not. Based on bioinformatic analysis, different transcription factor binding motifs are related to stress and immune responses in the two actin isoforms. Semiquantitative and real-time reverse transcription-PCR assays showed that both isoform transcripts were detectable ubiquitously in all the tissues examined. However, the basal expression levels of each isoform varied across tissues. Overall, the two isoforms showed a similar, but not identical, expression pattern. Our data suggest that the cytoplasmic actin genes may be the result of a recent duplication event in the greenling genome, which has not experienced significant subfunctionalization in their housekeeping roles.

Apoptotic Signaling Pathways: Caspases and Stress-Activated Protein Kinases

  • Cho, Ssang-Goo;Choi, Eui-Ju
    • BMB Reports
    • /
    • v.35 no.1
    • /
    • pp.24-27
    • /
    • 2002
  • Apoptotic cell death is an active process mediated by various signaling pathways, which include the caspase cascade and the stress-activated protein kinase pathways. The caspase cascade is activated by two distinct routes: one from cell surface and the other from mitochondria. Activation of the route from cell surface requires the cellular components that include membrane receptors, adaptor proteins such as TRADD and FADD, and caspase-8, while activation of the other from mitochondria requires Apaf-1, caspase-9, and cytosolic cytochrome c. On the other hand, persistent stimulation of the stress-activated protein kinase pathway is also shown to mediate apoptosis in many cell types. Gene-targeting studies with jnk- or jip-null mice, in particular, strongly suggest that this signaling pathway plays a pivotal role in the cellular machinery for apoptosis.

Proteomic Analysis of Osmotic Stress Response in Streptomyces coelicolor A3(2) Using 2-Dimentional Gel Electrophoresis and MALDI-TOF Mass Spectrometry

  • Cha, Chang-Jun;Lee, Eun-Jin;Roe, Jung-Rye
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 2002.06b
    • /
    • pp.55-55
    • /
    • 2002
  • An alternative sigma factor as encoded by the $\sigma$$\^$B/ gene in Streptomyces coelicolor A3(2) was known to be involved in the differentiation and osmotic stress response. Protein expression profiles of wild-type and a $\sigma$$\^$B/ mutant strain of S coelicolor A3(2), which is impaired in defense against osmotic stress, were compared in the absence and presence of osmotic stress, using 2-dimentional gel electrophoresis.(omitted)

  • PDF

Gleditsia Spina Extract Protects Hepatocytes from Oxidative Stress through Nrf2 Activation (皂角刺 추출물의 Nrf2 활성화를 통한 간세포 보호 효과)

  • Kim, Jae Kwang;Park, Sang Mi;Jegal, Kyung Hwan;Kim, Young Woo;Byun, Sung Hui;Kim, Sang Chan;Cho, Il Je
    • The Korea Journal of Herbology
    • /
    • v.30 no.4
    • /
    • pp.57-64
    • /
    • 2015
  • Objectives : Oxidative stress is one of the most causes of hepatocyte injury. Gleditsia spina, the thorns ofGleditsia sinensisLam., has been known for its anti-cancer and anti-inflammatory effects in Korean medicine. The present study investigated hepatoprotective effect of Gleditsia spina water extract (GSE) against oxidative stress induced by arachidonic acid (AA) + iron in HepG2 cells.Methods : To investigate cytoprotective effect of GSE, cells were pretreated with GSE and then subsequently exposed to 10 μM AA for 12 h, followed by 5 μM iron. Cell viability was monitored by MTT assay, and expression of apoptosis-related proteins was examined by immunoblot analysis. To identify responsible molecular mechanisms, reactive oxygen species (ROS) production, GSH contents, and mitochondrial membrane potential were measured. In addition, effect of GSE on nuclear factor erythroid 2-related factor 2 (Nrf2) activation was determined by immunoblot and antioxidant response element (ARE)-driven reporter gene assays.Results : GSE pretreatment prevented AA + iron-mediated cytotoxicity in concentration dependent manner. In addition, ROS production, glutathione depletion, and mitochondrial impairment by AA + iron were significantly inhibited by GSE. Furthermore, GSE promoted translocation of Nrf2 to nucleus, which acts as essential transcription factor for induction of antioxidant genes. Increased nuclear Nrf2 that caused by GSE treatment promoted transcriptional activity of ARE. Finally, GSE up-regulated sestrin-2 which was widely recognized as target gene of Nrf2.Conclusions : This study demonstrates that GSE protects hepatocytes from oxidative stress via activation of Nrf2 signaling pathway.

Characterization of Transgenic Tall Fescue Plants Overexpressing NDP Kinase Gene in Response to Cold Stress (NDP Kinase 유전자를 과발현시킨 형질전환 톨 페스큐 식물체의 저온 스트레스에 대한 내성 특성)

  • Lee, Sang-Hoon;Lee, Ki-Won;Kim, Kyung-Hee;Yun, Dae-Jin;Kwak, Sang-Soo;Lee, Byung-Hyun
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.29 no.4
    • /
    • pp.299-306
    • /
    • 2009
  • Oxidative stress is the main limiting factor in crop productivity. To solve global environmental problems using the plant biotechnology, we have developed on the oxidative stress-tolerant transgenic tall fescue plants via Agrobacterium-mediated genetic transformation method. In order to develop transgenic tall fescue (Festuca arundinacea Schreb.) plants with enhanced tolerance to multiple environmental stresses, nucleotide diphosphate kinase gene under the control of CaMV35S promoter were introduced into genome of tall fescue plants. Proteomic analysis revealed that transgenic tall fescue not only accumulated NDP kinase 2 protein in their cells, but also induced several other antioxindative enzyme-related proteins. When leaf discs of transgenic plants were subjected to cold stress, they showed approximately 30% less damage than wild-type plants. In addition, transgenic tall fescue plants showed normal growth when transgenic plants were subjected to $4^{\circ}C$ for 3 days treatments. These results suggest that transgene is important in ROS scavenging by induction of antioxidative proteins, and could improve abiotic stress tolerance in transgenic tall fescue plants.

Characterization of a Drought-Tolerance Gene, BrDSR, in Chinese Cabbage (배추의 건조 저항성 유전자, BrDSR의 기능 검정)

  • Yu, Jae-Gyeong;Lee, Gi-Ho;Park, Young-Doo
    • Horticultural Science & Technology
    • /
    • v.34 no.1
    • /
    • pp.102-111
    • /
    • 2016
  • The goal of this study was to characterize the BrDSR (Drought Stress Resistance in B. rapa) gene and to identify the expression network of drought-inducible genes in Chinese cabbage under drought stress. Agrobacterium-mediated transformation was conducted using a B. rapa inbred line ('CT001') and the pSL100 vector containing the BrDSR full length CDS (438 bp open reading frame). Four transgenic plants were selected by PCR and the expression level of BrDSR was approximately 1.9-3.4-fold greater than that in the wild-type control under drought stress. Phenotypic characteristics showed that BrDSR over-expressing plants were resistant to drought stress and showed normal growth habit. To construct a co-expression network of drought-responsive genes, B. rapa 135K cDNA microarray data was analyzed to identify genes associated with BrDSR. BrDSR was directly linked to DARK INDUCIBLE 2 (DIN2, AT3G60140) and AUTOPHAGY 8H (ATG8H, AT3G06420) previously reported to be leaf senescence and autophagy-related genes in plants. Taken together, the results of this study indicated that BrDSR plays a significant role in enhancement of tolerance to drought conditions.

The Mediating Effects of Obesity Perception on the Relationship between the Mother's Psychological Control and the Obese Child's Obesity Stress (아동이 지각한 어머니의 심리통제가 비만아동의 비만스트레스에 미치는 영향에 대한 비만지각의 매개효과)

  • Oh, Soo-Jeong;Han, Eu-Gene
    • Journal of Families and Better Life
    • /
    • v.26 no.4
    • /
    • pp.119-133
    • /
    • 2008
  • The purpose of this study is to investigate the mediating effects of obesity perception in the relationship between the mother's psychological control and the child's obesity stress. Questionnaires regarding the mother's psychological control, obesity perception and the child's obesity stress were administered to 1200 4th and 6th grade elementary school students in the province of Seoul, South Korea. Finally 1006 questionnaires were collected and statistically analyzed through Cronbach's, t-test, multiple linear regression analysis and stepwise regression. The main results of the study were as follows: 1) There were difference between the effects of the mother's psychological control, obesity perception, and child's obesity stress in terms of the sex, grade and obesity level of the child. 2) The mother's psychological control, obesity perception, and obesity level had an effect on the child's obesity stress. 3) As the result of searching for the mediating effects of obesity perception in the relationship between the mother's psychological control and the child's obesity stress.

Effects of Angelicae Gigantis Radix on Noise Stress-induced c-Fos Expression in Rats

  • Lee, Jae-Gab;Kim, Youn-Sub
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.21 no.2
    • /
    • pp.523-527
    • /
    • 2007
  • Previous studies reported that exposure to noise during pregnancy adversely influenced the development of the fetus and neonate. In Oriental medicine, medications based on Angelicae gigantis radix have been known to be of efficacy in the treatment of various diseases. c-Fos, an immediate early gene whose expression is sometimes used as a marker for stimulus-induced changes in the metabolic activity of neurons. In the present study, the influence of postnatal Angelicae gigantis radix administration on c-Fos expression in the each region of hippocampus of offspring rats with prenatal noise stress during pregnancy was investigated. From the present results, exposure to the prenatal stress during pregnancy enhanced c-Fox expression, whereas exposure to postnatal Angelice gigantis radix suppressed c-Fos expression in the offsprings with prenatal noise stress during pregnancy. Based on the present study, Angelicae gigantis radix may provide new therapeutic opportunities as an agent to counteract the effects of prenatal noise stress- induced hippocampal dysfunction, and may be useful in the treatment of psychiatric problems in children of mothers who have experienced noise stress during pregnancy.

Transcript Analysis of Wheat WAS-2 Gene Family under High Temperature Stress during Ripening Period

  • Ko, Chan Seop;Kim, Jin-Baek;Hong, Min Jeong;Kim, Kyeong Hoon;Seo, Yong Weon
    • Plant Breeding and Biotechnology
    • /
    • v.6 no.4
    • /
    • pp.363-380
    • /
    • 2018
  • Wheat is frequently exposed to high temperature during anthesis and ripening period, which resulted in yield loss and detrimental end-use-quality. The transcriptome analysis of wheat under high temperature stress during the early stage of the grain filling period was undertaken. Three expression patterns of differentially expressed genes (DEGs) during grain filling period were identified. The DEGs of seed storage protein and starch-branching enzyme showed continuous increases in their expressions during high temperature stress, as well as during the recovery period. The activities of the enzymes responsible for the elimination of antioxidants were significantly affected by exposure to high temperature stress. Only the WAS-2 family genes showed increased transcription levels under high temperature stress in dehulled spikelets. The relative transcription levels for sub-genome specific WAS-2 genes suggested that WAS-2 genes reacted with over-expression under high temperature stress and decreased back to normal expression during recovery. We propose the role of WAS-2 as a protective mechanism during the stage of grain development under high temperature in spikelets.

Transcription Factor EB-Mediated Lysosomal Function Regulation for Determining Stem Cell Fate under Metabolic Stress

  • Chang Woo Chae;Young Hyun Jung;Ho Jae Han
    • Molecules and Cells
    • /
    • v.46 no.12
    • /
    • pp.727-735
    • /
    • 2023
  • Stem cells require high amounts of energy to replicate their genome and organelles and differentiate into numerous cell types. Therefore, metabolic stress has a major impact on stem cell fate determination, including self-renewal, quiescence, and differentiation. Lysosomes are catabolic organelles that influence stem cell function and fate by regulating the degradation of intracellular components and maintaining cellular homeostasis in response to metabolic stress. Lysosomal functions altered by metabolic stress are tightly regulated by the transcription factor EB (TFEB) and TFE3, critical regulators of lysosomal gene expression. Therefore, understanding the regulatory mechanism of TFEB-mediated lysosomal function may provide some insight into stem cell fate determination under metabolic stress. In this review, we summarize the molecular mechanism of TFEB/TFE3 in modulating stem cell lysosomal function and then elucidate the role of TFEB/TFE3-mediated transcriptional activity in the determination of stem cell fate under metabolic stress.