• Title/Summary/Keyword: stress gene

Search Result 1,283, Processing Time 0.026 seconds

Effects of Radix Sophora Flavescentis Extract on Insulin Secretion in RIN-m5F Cells and $\alpha$-glucosidase Inhibition (고삼(苦蔘)이 RIN-m5F세포의 인슐린 분비와 $\alpha$-glucosidase 활성 억제에 미치는 영향)

  • An, So-Hyun;Cho, Chung-Sik;Kim, Cheol-Jung
    • The Journal of Internal Korean Medicine
    • /
    • v.30 no.3
    • /
    • pp.481-494
    • /
    • 2009
  • Background : Radix Sophora Flavescentis (SF) is used for the treatment of diabetes mellitus in Traditional Korean Medicine. However, little is known about the effects of Radix Sophora Flavescentis extract (SFE) on the hypoglycemic mechanism. Objective : We performed a series of experiments to verify the effects of SFE on the proliferation of RIN-m5F, the secretion and synthetic processes of insulin with glucose stimulation and inhibition of $\alpha$-glucosidase. Methods : Various amounts of SFE were added to the RIN-m5F cell culture to identify the effects on the cell proliferation, total amounts of insulin secretion, and related gene expression at the molecular level. Also to identify the inhibitory effect on the $\alpha$-glucosidase activities, ${\rho}NPG$ assay was done with various SFE concentrations followed by comparison with control. Results : SFE did not show considerable effects on RIN-m5F cells proliferation, insulin secretion or insulin mRNA expression, whichever phenomena did not depend on the glucose concentration. However, SFE significantly inhibited $\alpha$-glucosidase activity in a dose dependent manner compared to control. Conclusions : This study showed that SFE has potent $\alpha$-glucosidase inhibitory activity. Thus, SF may by used for the improvement of overall glycemic control. Further mechanism studies on the lipid toxicity and oxidation stress of SF seem to be necessary.

  • PDF

Characterization of dihydroflavonol 4-reductase cDNA in tea [Camellia sinensis (L.) O. Kuntze]

  • Singh, Kashmir;Kumar, Sanjay;Yadav, Sudesh Kumar;Ahuja, Paramvir Singh
    • Plant Biotechnology Reports
    • /
    • v.3 no.1
    • /
    • pp.95-101
    • /
    • 2009
  • Tea leaves are major source of catechins—antioxidant flavonoids. Dihydroflavonol 4-reductase (DFR, EC 1.1.1.219) is one of the important enzymes that catalyzes the reduction of dihydroflavonols to leucoanthocyanins, a key ''late'' step in the biosynthesis of catechins. This manuscript reports characterization of DFR from tea (CsDFR) that comprised 1,413 bp full-length cDNA with ORF of 1,044 bp (115-1,158) and encoding a protein of 347 amino acids. Sequence comparison of CsDFR with earlier reported DFR sequences in a database indicated conservation of 69-87% among amino acid residues. In silico analysis revealed CsDFR to be a membrane-localized protein with a domain (between 16 and 218 amino acids) resembling the NAD-dependent epimerase/dehydratase family. The theoretical molecular weight and isoelectric point of the deduced amino sequence of CsDFR were 38.67 kDa and 6.22, respectively. Upon expression of CsDFR in E. coli, recombinant protein was found to be functional and showed specific activity of 42.85 nmol $min^{-1}$ mg $protein^{-1}$. Expression of CsDFR was maximum in younger rather than older leaves. Expression was down-regulated in response to drought stress and abscisic acid, unaffected by gibberellic acid treatment, but up-regulated in response to wounding, with concomitant modulation of catechins content. This is the first report of functionality of recombinant CsDFR and its expression in tea.

Cloning of Heat Shock Protein 70 and Its Expression Profile under an Increase of Water Temperature in Rhynchocypris kumgangensis (금강모치(Rhynchocypris kumgangensis)에서 heat shock protein 70의 클로닝과 수온상승에 의한 발현 변화 분석)

  • Im, Jisu;Ghil, Sungho
    • Journal of Korean Society on Water Environment
    • /
    • v.29 no.2
    • /
    • pp.232-238
    • /
    • 2013
  • Water temperature is key factor influencing growth and reproduction of fish and its increase give rise to various physiological changes including gene expression. Heat shock protein (Hsp), one of the molecular chaperones, is highly conserved throughout evolution and its expression is induced by various stressors such as temperature, oxidative, physical and chemical stresses. Here, we isolated partial cDNA clones encoding 70-kDa Hsp (Hsp70) and $\beta$-actin using reverse transcriptase-PCR (RT-PCR) from gut of Rhynchocypris kumgangensis, a Korean indigenous species and cold-water fish, and investigated expression profiles of Hsp70 under an increase of water temperature using $\beta$-actin as an internal control for RT-PCR. Cloned Hsp70 cDNA of R. kumgangensis showed homology to Ctenopharyngodon idella (96%), Hypophthalmichthys molitrix (96%), Danio rerio (93%) and Oncorhynchus mykiss (81%) Hsp70. Cloned $\beta$-actin cDNA of R. kumgangensis showed homology to D. rerio (98%), H. molitrix (97%), C. idella (97%) and O. mykiss (90%) $\beta$-actin. Both mRNA of Hsp70 and $\beta$-actin were expressed in gut, brain, and liver in R. kumgangensis. Futhermore, expression of Hsp70, in brain, was highly augmented by an increase of water temperature. These results suggest that Hsp70 mRNA expression level in brain can be used as a biological molecular marker to represent physiological stress against an increase of water temperature.

The Protective Effects of $Hwangyeon-tang$ on Acute Gastric Ulcer induced by HCl/EtOH solution in Rats (흰쥐의 급성 위점막 손상에서 황연탕(黃蓮湯)이 apoptosis 관련단백질 및 성장인자 발현에 미치는 영향)

  • Kim, Bum-Hoi
    • Journal of Society of Preventive Korean Medicine
    • /
    • v.16 no.1
    • /
    • pp.57-70
    • /
    • 2012
  • The apoptotic process of gastric mucosa triggered by induction of proapoptotic gene expression, such as Bax. Stress-inducing factors may affect Bcl-2/Bax ratio and thus the rate of apoptosis through modulation of the expression of both proteins depending upon the experimental model. TGF-${\beta}$ is believed to be essential in wound healing for regulation of cell growth and differentiation and is known to be involved in tissue repair and remodeling. The polypeptide growth factors, such as vascular endothelial growth factor(VEGF), regulate essential cell functions involved in tissue healing including cell proliferation, migration, and differentiation. The purpose of this study was to investigate whether the oral administration of $Hwangyeon-tang$ (HYT) would have protect effects on gastric ulcer in rat. Sprague-Dawley rats (n=40) were randomly divided into 4 groups ; Normal, Saline, Cimetidine and HYT group. The saline, cimetidine and HYT extract were orally administrated to each group and gastric ulcer was induced with HCl/EtOH solution. After 1 hour, the stomachs were collected for histological observation and immunohistochemistry. In Results, the wound healing of gastric ulcer was promoted by HYT and the significant alterations of BAX/Bcl-2, TGF-${\beta}1$ and VEGF proteins in gastric mucosa were observed. These results suggest that Fritillaria ussuriensis extract promotes wound healing and has protective effects on gastric ulcer in rats.

Lack of O-Polysaccharide Renders Bradyrhizobium japonicum More Resistant to Organic Acid Stress

  • OH , EUN-TAEX;JU, YOUNG-JUN;KOH, SUNG-CHEOL;KIM, YONG-HWI;KIM, JONG-SUL;SO, JAE-SEONG
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.6
    • /
    • pp.1324-1326
    • /
    • 2004
  • In previous studies, we isolated an isogenic LPS mutant of Bradyrhizobium japonicum 61A101C, which was completely devoid of O-polysaccharide and had altered cell surface characteristics. Subsequently, the mutated gene was identified, cloned, and used to complement the LPS mutant strain JS314 to restore the phenotype. Since it has been reported that in Escherichia coli LPS O-polysaccharide is involved in resistance to an organic acid such as acetic acid under low pH (Barna et al., Molecular Microbiology 43: 629-640, 2002), we compared the organic acid resistance of the three B. japonicum strains; wild-type 61A101C, the LPS mutant JS314, and the complemented strain to determine whether the role of O-polysaccharide in the resistance to organic acid could be generalized. Growth of all three strains was inhibited by the presence of 3 mM acetic acid under acidic condition (pH 5.5). To our surprise, however, in the presence of 2 mM acetic acid, wild-type and the complemented strains did not grow while the $LPS^-$ mutant showed a significant growth. Therefore, unlike in E. coli, the lack of O­polysaccharide of LPS appears to render B. japonicum more resistant to organic acid.

Chronic intermittent form of isovaleric aciduria in a 2-year-old boy

  • Cho, Jin Min;Lee, Beom Hee;Kim, Gu-Hwan;Kim, Yoo-Mi;Choi, Jin-Ho;Yoo, Han-Wook
    • Clinical and Experimental Pediatrics
    • /
    • v.56 no.8
    • /
    • pp.351-354
    • /
    • 2013
  • Isovaleric aciduria (IVA) is caused by an autosomal recessive deficiency of isovaleryl-CoA dehydrogenase (IVD). IVA presents either in the neonatal period as an acute episode of fulminant metabolic acidosis, which may lead to coma or death, or later as a "chronic intermittent form" that is associated with developmental delays, with or without recurrent acidotic episodes during periods of stress, such as infections. Here, we report the case of a 2-year old boy with IVA who presented with the chronic intermittent form. He was admitted to Asan Medical Center Children's Hospital with recurrent vomiting. Metabolic acidosis, hyperammonemia, elevated serum lactate and isovalerylcarnitine levels, and markedly increased urine isovalerylglycine concentration were noted. Sequence analysis of the IVD gene in the patient revealed the novel compound mutations-a missense mutation, c.986T>C (p.Met329Thr) and a frameshift mutation, c.1083del (p.Ile361fs$^*11$). Following stabilization during the acute phase, the patient has remained in a stable condition on a low-leucine diet.

Loss of hsp70.1 Decreases Functional Motor Recovery after Spinal Cord Injury in Mice

  • Kim, Hyun-Jeong;Jung, Ji-In;Kim, Young-Kyung;Lee, Jae-Seon;Yoon, Young-Wook;Kim, June-Sun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.14 no.3
    • /
    • pp.157-161
    • /
    • 2010
  • Heat shock proteins (HSPs) are specifically induced by various forms of stress. Hsp70.1, a member of the hsp70 family is known to play an important role in cytoprotection from stressful insults. However, the functional role of Hsp70 in motor function after spinal cord injury (SCI) is still unclear. To study the role of hsp70.1 in motor recovery following SCI, we assessed locomotor function in hsp70.1 knockout (KO) mice and their wild-type (WT) mice via the Basso, Beattie and Bresnahan (BBB) locomotor rating scale, before and after spinal hemisection at T13 level. We also examined lesion size in the spinal cord using Luxol fast blue/cresyl violet staining. One day after injury, KO and WT mice showed no significant difference in the motor function due to complete paralysis following spinal hemisection. However, when it compared to WT mice, KO mice had significantly delayed and decreased functional outcomes from 4 days up to 21 days after SCI. KO mice also showed significantly greater lesion size in the spinal cord than WT mice showed at 21 days after spinal hemisection. These results suggest that Hsp70 has a protective effect against traumatic SCI and the manipulation of the hsp70.1 gene may help improve the recovery of motor function, thereby enhancing neuroprotection after SCI.

The Antifibrotic and Antioxidant Activities of Hot Water Extract of Adventitious Root Culture of Panax ginseng (ARCP)

  • Lim, Hee-Kyoung;Kim, Youn-Woo;Lee, Dae-Ho;Cho, Somi-Kim;Cho, Moon-Jae
    • Journal of Applied Biological Chemistry
    • /
    • v.50 no.2
    • /
    • pp.78-84
    • /
    • 2007
  • The anti-fibrotic effects of hot water extract of adventitious root culture of Panax ginseng (ARCP) and the possible mechanisms were investigated on $CCl_4-induced$ hepatotoxicity model mice. Fibrosis was induced by a mild treatment of $CCl_4$. Then silymarin as a positive control drug and ARCP or carrier alone as a negative control were treated. Serum GPT, GOT and ALP activity levels were lowered by 25, 21 and 11% for silymarin treated group and by 48, 39 and 14% for ARCP treated group compared to carrier treated alone. Hepatic collagen for ARCP treatment group was reduced by 18% and MDA contents decreased a little more. Pro-fibrotic gene ($TGF-{\beta}1$, TIMP-1 and ${\alpha}-SMA$) expression increased following the $CCl_4$ treatment, but both the silymarin and the ARCP treatments decreased the expressions of these genes by 20% to 50%. The antioxidant effect of ARCP was studied by DPPH free radical scavenging activity. In addition, a generation of reactive oxygen species (ROS) was also reduced in $H_2O_2-treated$ HepG2 cells upon the ARCP treatment. In summary, ARCP has antioxidant property, and can have some protection against oxidative stress; more importantly, ARCP can efficiently protect mice against $CCl_4-induced$ fibrosis.

Comparative Genomics Reveals the Core and Accessory Genomes of Streptomyces Species

  • Kim, Ji-Nu;Kim, Yeonbum;Jeong, Yujin;Roe, Jung-Hye;Kim, Byung-Gee;Cho, Byung-Kwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.10
    • /
    • pp.1599-1605
    • /
    • 2015
  • The development of rapid and efficient genome sequencing methods has enabled us to study the evolutionary background of bacterial genetic information. Here, we present comparative genomic analysis of 17 Streptomyces species, for which the genome has been completely sequenced, using the pan-genome approach. The analysis revealed that 34,592 ortholog clusters constituted the pan-genome of these Streptomyces species, including 2,018 in the core genome, 11,743 in the dispensable genome, and 20,831 in the unique genome. The core genome was converged to a smaller number of genes than reported previously, with 3,096 gene families. Functional enrichment analysis showed that genes involved in transcription were most abundant in the Streptomyces pan-genome. Finally, we investigated core genes for the sigma factors, mycothiol biosynthesis pathway, and secondary metabolism pathways; our data showed that many genes involved in stress response and morphological differentiation were commonly expressed in Streptomyces species. Elucidation of the core genome offers a basis for understanding the functional evolution of Streptomyces species and provides insights into target selection for the construction of industrial strains.

Effect of High glucose on JNK/ERK signaling pathway in UMR106 cells

  • Jung, In-Ok;Jin, Mei-Hua;Kim, Sung-Jin
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 2003.11a
    • /
    • pp.79-79
    • /
    • 2003
  • Recently diabetes has been found to be associated with metabolic bone diseases such as osteoporosis. In the present study, attempts have been made-to explore the effect of high glucose in bone formation. Osteoblast-like UMR 106 cells were treated with high glucose (22mM, 33mM, 44mM) for 1 or 2 days. High glucose significantly inhibited proliferation of UMR106 cells in a time- and dose- dependent manner as evidenced by MTT assay. For the evaluation of collagen synthesis, UMR 106 cells were cultured in high glucose media (44mM) for 24 h and the ratio of collagen content to total protein was measured. In addition, gene expression pattern of type I collagen was assessed by RT-PCR. The high concentration of glucose inhibited a collagen synthesis, a marker of bone formation activity. JNK, c- Jun N-terminal Kinase, is known to play an important role in stress-associated cell death. In this regard, we tested to determine whether high glucose has any effect on JNK activity. It has been found that treatment of high glucose induced phosphorylation of JNK. On the other hand, ERK phosphorylation was inhibited by high glucose in a dose-dependent manner. Taken together, Therefore these results indicate that inhibition of proliferation in UMR 106 cells following high glucose is related to JNK/ERK containing signal pathways. This study showed high glucose concentration could alter the bone metabolism leading to defective bone formation, suggesting that high glucose due to diabetes may playa significant role in the development of metabolic bone disease.

  • PDF