Browse > Article
http://dx.doi.org/10.4196/kjpp.2010.14.3.157

Loss of hsp70.1 Decreases Functional Motor Recovery after Spinal Cord Injury in Mice  

Kim, Hyun-Jeong (Department of Dental Anesthesiology and Dental Research Institute, Seoul National University School of Dentistry)
Jung, Ji-In (Department of Physiology, Korea University College of Medicine)
Kim, Young-Kyung (Department of Physiology, Korea University College of Medicine)
Lee, Jae-Seon (Divisions of Radiation Cancer Research and Korea Institute of Radiological and Medical Sciences)
Yoon, Young-Wook (Department of Physiology, Korea University College of Medicine)
Kim, June-Sun (Department of Physical Therapy, Korea University College of Health Science)
Publication Information
The Korean Journal of Physiology and Pharmacology / v.14, no.3, 2010 , pp. 157-161 More about this Journal
Abstract
Heat shock proteins (HSPs) are specifically induced by various forms of stress. Hsp70.1, a member of the hsp70 family is known to play an important role in cytoprotection from stressful insults. However, the functional role of Hsp70 in motor function after spinal cord injury (SCI) is still unclear. To study the role of hsp70.1 in motor recovery following SCI, we assessed locomotor function in hsp70.1 knockout (KO) mice and their wild-type (WT) mice via the Basso, Beattie and Bresnahan (BBB) locomotor rating scale, before and after spinal hemisection at T13 level. We also examined lesion size in the spinal cord using Luxol fast blue/cresyl violet staining. One day after injury, KO and WT mice showed no significant difference in the motor function due to complete paralysis following spinal hemisection. However, when it compared to WT mice, KO mice had significantly delayed and decreased functional outcomes from 4 days up to 21 days after SCI. KO mice also showed significantly greater lesion size in the spinal cord than WT mice showed at 21 days after spinal hemisection. These results suggest that Hsp70 has a protective effect against traumatic SCI and the manipulation of the hsp70.1 gene may help improve the recovery of motor function, thereby enhancing neuroprotection after SCI.
Keywords
Spinal cord injury; Neuroprotection; Heat shock protein; Mice;
Citations & Related Records

Times Cited By Web Of Science : 1  (Related Records In Web of Science)
Times Cited By SCOPUS : 1
연도 인용수 순위
1 Manabe Y, Wang JM, Murakami T, Warita H, Hayashi T, Shoji M, Abe K. Expressions of nitrotyrosine and TUNEL immunoreactivities in cultured rat spinal cord neurons after exposure to glutamate, nitric oxide, or peroxynitrite. J Neurosci Res. 2001;65:371-377.   DOI   ScienceOn
2 Willoughby DS, Priest JW, Nelson M. Expression of the stress proteins, ubiquitin, heat shock protein 72, and myofibrillar protein content after 12 weeks of leg cycling in persons with spinal cord injury. Arch Phys Med Rehabil. 2002;83:649-654.   DOI   ScienceOn
3 Kalmar B, Burnstock G, Vrbova G, Urbanics R, Csermely P, Greensmith L. Upregulation of heat shock proteins rescues motoneurones from axotomy-induced cell death in neonatal rats. Exp Neurol. 2002;176:87-97.   DOI   ScienceOn
4 Hartl FU. Molecular chaperones in cellular protein folding. Nature. 1996;381:571-580.   DOI   ScienceOn
5 Tachibana T, Noguchi K, Ruda MA. Analysis of gene expression following spinal cord injury in rat using complementary DNA microarray. Neurosci Lett. 2002;327:133-137.   DOI   ScienceOn
6 Kim J, Yoon YW, Hong SK, Na HS. Cold and mechanical allodynia in both hindpaws and tail following thoracic spinal cord hemisection in rats: Time courses and their correlates. Neurosci Lett. 2003;343:200-204.   DOI   ScienceOn
7 Fukamachi Y, Karasaki Y, Sugiura T, Itoh H, Abe T, Yamamura K, Higashi K. Zinc suppresses apoptosis of U937 cells induced by hydrogen peroxide through an increase of the Bcl-2/Bax ratio. Biochem Biophys Res Comm. 1998;246:364-369.   DOI   ScienceOn
8 Kunz S, Tegeder I, Coste O, Marian C, Pfenninger A, Corvey C, Karas M, Geisslinger G, Niederberger E. Comparative proteomic analysis of the rat spinal cord in inflammatory and neuropathic pain models. Neurosci Lett. 2005;381:289-293.   DOI   ScienceOn
9 Basso DM, Beattie MS, Bresnahan JC. A sensitive and reliable locomotor rating scale for open field testing in rats. J Neurotrauma. 1995;12:1-21.   DOI   ScienceOn
10 Sasara T, Cizkova D, Mestril R, Galik J, Sugahara K, Marsala M. Spinal heat shock protein (70) expression: effect of spinal ischemia, hyperthermia (42 degrees C)/hypothermia (27 degrees C), NMDA receptor activation and potassium evoked depolarization on the induction. Neuroschem Intern. 2004;44:53-64.   DOI   ScienceOn
11 Hall ED. The neuroprotective pharmacology of methylprednisolone. J Neurosurg. 1992;76:13-22.   DOI
12 Tator CH, Fehlings MG. Review of the secondary injury theory of acute spinal cord trauma with emphasis on vascular mechanisms. J Neurosurg. 1991;75:15-26.   DOI
13 Sharma HS, Gordh T, Wiklund L, Mohanty S, Sjoquist PO. Spinal cord injury induced heat shock protein expression is reduced by an antioxidant compound H-290/51. An experimental study using light and electron microscopy in the rat. J Neural Transm. 2006;113:521-536.   DOI   ScienceOn
14 Perdrizet GA, Lena CJ, Shapiro DS, Rewinski MJ. Preoperative stress conditioning prevents paralysis after experimental aortic surgery: Increased heat shock protein content is associated with ischemic tolerance of the spinal cord. J Thorac Cardiovasc Surg. 2002;124:162-170.   DOI   ScienceOn
15 Bethea JR. Spinal cord injury-induced inflammation: a dualedged sword. Neural Plast Regen. 2000;128:33-42.   DOI
16 Robinson MB, Tidwell JL, Gould T, Taylor AR, Newbern JM, Graves J, Tytell M, Milligan CE. Extracellular heat shock protein 70: A critical component for motoneuron survival. J Neurosci. 2005;25:9735-9745.   DOI   ScienceOn
17 Chen Y, Voegeli TS, Liu PP, Noble EG, Currie RW. Heat shock paradox and a new role of heat shock proteins and their receptors as anti-inflammation targets. Inflamm Allergy Drug Targets. 2007;6:91-100.   DOI   ScienceOn
18 Gris D, Marsh DR, Oatway MA, Chen Y, Hamilton EF, Dekaban GA, Weaver LC. Transient blockade of the CD11d/CD18 integrin reduces secondary damage after spinal cord injury, improving sensory, autonomic, and motor function. J Neurosci. 2004;24:4043-4051.   DOI   ScienceOn
19 Taoka Y, Okajima K. Spinal cord injury in the rat. Prog Neurobiol. 1998;56:341-358.   DOI   ScienceOn
20 Hecker JG, Sundram H, Zou S, Praestgaard A, Bavaria JE, Ramchandren S, McGarvey M. Heat shock proteins HSP70 and HSP27 in the cerebral spinal fluid of patients undergoing thoracic aneurysm repair correlate with the probability of postoperative paralysis. Cell Stress Chaperones. 2008;13:435-446.   DOI   ScienceOn
21 Rajdev S, Hara K, Kokubo Y, Mestril R, Dillmann W, Weinstein PR, Sharp FR. Mice overexpressing rat heat shock protein 70 are protected against cerebral infarction. Ann Neurol. 2000;47:782-791.   DOI   ScienceOn
22 Lee JR, Han SM, Leem JG, Hwang SJ. Effects of intrathecal bupivacaine in conjunction with hypothermia on neuronal protection against transient spinal cord ischemia in rats. Acta Anaesthesiol Scand. 2007;51:60-67.   DOI   ScienceOn
23 Cizkova D, Carmel JB, Yamamoto K, Kakinohana O, Sun D, Hart RP, Marsala M. Characterization of spinal HSP72 induction and development of ischemic tolerance after spinal ischemia in rats. Exp Neurol. 2004;185:97-108.   DOI   ScienceOn
24 Brown IR. Heat shock proteins and protection of the nervous system. Stress Resp Biol Med. 2007;1113:147-158.
25 Kwon BK, Tetzlaff W, Grauer JN, Beiner J, Vaccaro AR. Pathophysiology and pharmacologic treatment of acute spinal cord injury. Spine J. 2004;4:451-464.   DOI   ScienceOn
26 Song GQ, Cechvala C, Resnick DK, Dempsey RJ, Rao VLR. GeneChip((R)) analysis after acute spinal cord injury in rat. J Neurochem. 2001;79:804-815.
27 Kikuchi S, Shinpo K, Takeuchi M, Tsuji S, Yabe I, Niino M, Tashiro K. Effect of geranylgeranylaceton on cellular damage induced by proteasome inhibition in cultured spinal neurons. J Neurosci Res. 2002;69:373-381.   DOI   ScienceOn
28 Awad H, Suntres Z, Heijmans J, Smeak D, Bergdall-Costell V, Christofi FL, Magro C, Oglesbee M. Intracellular and extracellular expression of the major inducible 70 kDa heat shock protein in experimental ischemia-reperfusion injury of the spinal cord. Exp Neurol. 2008;212:275-284.   DOI   ScienceOn
29 Lee JE, Yenari MA, Sun GH, Xu L, Emond MR, Cheng D, Steinberg GK, Giffard RG. Differential neuroprotection from human heat shock protein 70 3roverexpression in in vitro and in vivo models of ischemia and ischemia-like conditions. Exp Neurol. 2001;170:129-139.   DOI   ScienceOn
30 Plumier JCL, Krueger AM, Currie RW, Kontoyiannis D, Kollias G, Pagoulatos GN. Transgenic mice expressing the human inducible Hsp70 have hippocampal neurons resistant to ischemic injury. Cell Stress Chaperones. 1997;2:162-167.   DOI   ScienceOn
31 Hill CE, Beattie MS, Bresnahan JC. Degeneration and sprouting of identified descending supraspinal axons after contusive spinal cord injury in the rat. Exp Neurol. 2001;171:153-169.   DOI   ScienceOn
32 Sribnick EA, Wingrave JM, Matzelle DD, Wilford GG, Ray SK, Banik NL. Estrogen attenuated markers of inflammation and decreased lesion volume in acute spinal cord injury in rats. J Neurosci Res. 2005;82:283-293.   DOI   ScienceOn
33 Turner CP, Panter SS, Sharp FR. Anti-oxidants prevent focal rat brain injury as assessed by induction of heat shock proteins (HSP70, HO-1/HSP32, HSP47) following subarachnoid injections of lysed blood. Mol Brain Res. 1999;65:87-102.   DOI   ScienceOn
34 Stirling DP, Khodarahmi K, Liu J, McPhail LT, McBride CB, Steeves JD, Ramer MS, Tetzlaff W. Minocycline treatment reduces delayed oligodendrocyte death, attenuates axonal die-back, and improves functional outcome after spinal cord injury. J Neurosci. 2004;24:2182-2190.   DOI   ScienceOn
35 Sribnick EA, Matzelle DD, Ray SK, Banik NL. Estrogen treatment of spinal cord injury attenuates calpain activation and apoptosis. J Neurosci Res. 2006;84:1064-1075.   DOI   ScienceOn
36 Kabakov AE, Gabai VL. Heat shock induced accumulation of 70 kDa stress protein (HSP70) can protect ATP depleted tumor cells from necrosis. Exp Cell Res. 1995;217:15-21.   DOI   ScienceOn
37 Marber MS, Mestril R, Chi SH, Sayen MR, Yellon DM, Dillmann WH. Overexpression of the rat inducible 70kDa heat stress protein transgenic mouse increases the resistance of the heart to ischemic injury. J Clin Invest. 1995;95:1446-1456.   DOI   ScienceOn
38 Shin YC, Choi KY, Kim WG. Cyclosporin A has a protective effect with induced upregulation of Hsp70 and nNOS on severe spinal cord ischemic injury in rabbits. J Invest Surg. 2007;20:113-120.   DOI   ScienceOn
39 Matsumoto M, Ohtake K, Wakamatsu H, Oka S, Kiyoshima T, Nakakimura K, Sakabe T. The time course of acquisition of ischemic tolerance and induction of heat shock protein 70 after a brief period of ischemia in the spinal cord in rabbits. Anesth Anal. 2001;92:418-423.   DOI   ScienceOn
40 Lee SH, Kwon HM, Kim YJ, Lee KM, Kim M, Yoon BW. Effects of hsp70.1 gene knockout on the mitochondrial apoptotic pathway after focal cerebral ischemia. Stroke. 2004;35:2195-2199.   DOI   ScienceOn
41 Tanabe M, Ono K, Honda M, Ono H. Gabapentin and pregabalin ameliorate mechanical hypersensitivity after spinal cord injury in mice. Eur J Pharmacol. 2009;609:65-68.   DOI   ScienceOn
42 Park SW, Yi JH, Miranpuri G, Satriotomo I, Bowen K, Resnick DK, Vemuganti R. Thiazolidinedione class of peroxisome proliferator- activated receptor gamma agonists prevents neuronal damage, motor dysfunction, myelin loss, neuropathic pain, and inflammation after spinal cord injury in adult rats. J Pharmacol Exp Ther. 2007;320:1002-1012.
43 Abe T, Konishi T, Hirano T, Kasai H, Shimizu K, Kashimura M, Higashi K. Possible correlation between DNA damage induced by hydrogen peroxide and translocation of heat shock 70 protein into the nucleus. Biochem Biophys Res Comm. 1995;206:548-555.   DOI   ScienceOn
44 Wagner M, Hermanns I, Bittinger F, Kirkpatrick CJ. Induction of stress proteins in human endothelial cells by heavy metal ions and heat shock. Am J Phsyio Lung Cell Mol Physiol. 1999;277:L1026-L1033.   DOI
45 Walter L, Rauh F, Gunther E. Comparative analysis of the 3 major histocompatiblity complex linked heat shock protein 70 (HSP70) genes of the rat. Immunogenetics. 1994;40:325-330.   DOI   ScienceOn
46 Morimoto RI, Sarge KD, Abravaya K. Transcriptional regulation of heat shock genes - a paradigm for inducible genomic responses. J Biol Chem. 1992;267:21987-21990.
47 Waza M, Adachi H, Katsuno M, Minamiyama M, Sang C, Tanaka F, Inukai A, Doyu M, Sobue G. 17-AAG, an Hsp90 inhibitor, ameliorates polyglutamine-mediated motor neuron degeneration. Nat Med. 2005;11:1088-1095.   DOI   ScienceOn