Browse > Article
http://dx.doi.org/10.4014/jmb.1504.04008

Comparative Genomics Reveals the Core and Accessory Genomes of Streptomyces Species  

Kim, Ji-Nu (School of Chemical and Biological Engineering, Institute of Molecular Biology and Genetics, and Bioengineering Institute, Seoul National University)
Kim, Yeonbum (Laboratory of Molecular Microbiology, School of Biological Sciences, Institute of Microbiology, Seoul National University)
Jeong, Yujin (Department of Biological Sciences and KI for the BioCentury, Korea Advanced Institute of Science and Technology)
Roe, Jung-Hye (Laboratory of Molecular Microbiology, School of Biological Sciences, Institute of Microbiology, Seoul National University)
Kim, Byung-Gee (School of Chemical and Biological Engineering, Institute of Molecular Biology and Genetics, and Bioengineering Institute, Seoul National University)
Cho, Byung-Kwan (Department of Biological Sciences and KI for the BioCentury, Korea Advanced Institute of Science and Technology)
Publication Information
Journal of Microbiology and Biotechnology / v.25, no.10, 2015 , pp. 1599-1605 More about this Journal
Abstract
The development of rapid and efficient genome sequencing methods has enabled us to study the evolutionary background of bacterial genetic information. Here, we present comparative genomic analysis of 17 Streptomyces species, for which the genome has been completely sequenced, using the pan-genome approach. The analysis revealed that 34,592 ortholog clusters constituted the pan-genome of these Streptomyces species, including 2,018 in the core genome, 11,743 in the dispensable genome, and 20,831 in the unique genome. The core genome was converged to a smaller number of genes than reported previously, with 3,096 gene families. Functional enrichment analysis showed that genes involved in transcription were most abundant in the Streptomyces pan-genome. Finally, we investigated core genes for the sigma factors, mycothiol biosynthesis pathway, and secondary metabolism pathways; our data showed that many genes involved in stress response and morphological differentiation were commonly expressed in Streptomyces species. Elucidation of the core genome offers a basis for understanding the functional evolution of Streptomyces species and provides insights into target selection for the construction of industrial strains.
Keywords
Streptomyces; comparative genomics; pan-genome; core genome;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Dyson P. 2011. Streptomyces: Molecular Biology and Biotechnology. Horizon Scientific Press Norfolk, UK.
2 Binnewies TT, Motro Y, Hallin PF, Lund O, Dunn D, La T, et al. 2006. Ten years of bacterial genome sequencing: comparative-genomics-based discoveries. Funct. Integr. Genomics 6: 165-185.   DOI
3 Bursy J, Kuhlmann AU, Pittelkow M, Hartmann H, Jebbar M, Pierik AJ, Bremer E. 2008. Synthesis and uptake of the compatible solutes ectoine and 5-hydroxyectoine by Streptomyces coelicolor A3(2) in response to salt and heat stresses. Appl. Environ. Microbiol. 74: 7286-7296.   DOI
4 Cane DE, Watt RM. 2003. Expression and mechanistic analysis of a germacradienol synthase from Streptomyces coelicolor implicated in geosmin biosynthesis. Proc. Natl. Acad. Sci. USA 100: 1547-1551.   DOI
5 Chandra G, Chater KF. 2014. Developmental biology of Streptomyces from the perspective of 100 actinobacterial genome sequences. FEMS Microbiol. Rev. 38: 345-379.   DOI
6 Feng WH, Mao XM, Liu ZH, Li YQ. 2011. The ECF sigma factor SigT regulates actinorhodin production in response to nitrogen stress in Streptomyces coelicolor. Appl. Microbiol. Biotechnol. 92: 1009-1021.   DOI
7 Jayapal KP, Lian W, Glod F, Sherman DH, Hu W-S. 2007. Comparative genomic hybridizations reveal absence of large Streptomyces coelicolor genomic islands in Streptomyces lividans. BMC Genomics 8: 229.   DOI
8 Helmann JD. 2002. The extracytoplasmic function (ECF) sigma factors. Adv. Microb. Physiol. 46: 47-110.   DOI
9 Hsiao NH, Kirby R. 2007. Comparative genomics of Streptomyces avermitilis, Streptomyces cattleya, Streptomyces maritimus and Kitasatospora aureofaciens using a Streptomyces coelicolor microarray system. Antonie Van Leeuwenhoek 93: 1-25.   DOI
10 Ikeda H, Ishikawa J, Hanamoto A, Shinose M, Kikuchi H, Shiba T, et al. 2003. Complete genome sequence and comparative analysis of the industrial microorganism Streptomyces avermitilis. Nat. Biotechnol. 21: 526-531.   DOI
11 Kallifidas D, Thomas D, Doughty P, Paget MS. 2010. The sigmaR regulon of Streptomyces coelicolor A32 reveals a key role in protein quality control during disulphide stress. Microbiology 156: 1661-1672.   DOI
12 Kim M-S, Dufour YS, Yoo JS, Cho Y-B, Park J-H, Nam G-B, et al. 2012. Conservation of thiol-oxidative stress responses regulated by SigR orthologues in actinomycetes. Mol. Microbiol. 85: 326-344.   DOI
13 Bentley SD, Chater KF, Cerdeno-Tarraga AM, Challis GL, Thomson NR, James KD, et al. 2002. Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 417: 141-147.   DOI
14 Bibb MJ. 2005. Regulation of secondary metabolism in streptomycetes. Curr. Opin. Microbiol. 8: 208-215.   DOI
15 Flärdh K, Buttner MJ. 2009. Streptomyces morphogenetics: dissecting differentiation in a filamentous bacterium. Nat. Rev. Microbiol. 7: 36-49.   DOI
16 Gehring AM, Yoo NJ, Losick R. 2001. RNA polymerase sigma factor that blocks morphological differentiation by Streptomyces coelicolor. J. Bacteriol. 183: 5991-5996.   DOI
17 Hahn MY, Bae JB, Park JH, Roe JH. 2003. Isolation and characterization of Streptomyces coelicolor RNA polymerase, its sigma, and antisigma factors. Methods Enzymol 370: 73-82.   DOI
18 Mao XM, Zhou Z, Cheng LY, Hou XP , Guan WJ, Li YQ. 2009. Involvement of SigT and RstA in the differentiation of Streptomyces coelicolor. FEBS Lett. 583: 3145-3150.   DOI
19 Nett M, Ikeda H, Moore BS. 2009. Genomic basis for natural product biosynthetic diversity in the actinomycetes. Nat. Prod. Rep. 26: 1362-1384.   DOI
20 Medini D, Donati C, Tettelin H, Masignani V, Rappuoli R. 2005. The microbial pan-genome. Curr. Opin. Genet. Dev. 15: 589-594.   DOI
21 Newton GL, Buchmeier N, Fahey RC. 2008. Biosynthesis and functions of mycothiol, the unique protective thiol of Actinobacteria. Microbiol. Mol. Biol. Rev. 72: 471-494.   DOI
22 Ohnishi Y, Ishikawa J, Hara H, Suzuki H, Ikenoya M, Ikeda H, et al. 2008. Genome sequence of the streptomycinproducing microorganism Streptomyces griseus IFO 13350. J. Bacteriol. 190: 4050-4060.   DOI
23 Paget MS, Chamberlin L, Atrih A, Foster SJ, Buttner MJ. 1999. Evidence that the extracytoplasmic function sigma factor sigmaE is required for normal cell wall structure in Streptomyces coelicolor A3(2). J. Bacteriol. 181: 204-211.
24 Paget MS, Kang JG, Roe JH, Buttner MJ. 1998. sigmaR, an RNA polymerase sigma factor that modulates expression of the thioredoxin system in response to oxidative stress in Streptomyces coelicolor A3(2). EMBO J. 17: 5776-5782.   DOI
25 Rebets Y, Brotz E, Tokovenko B, Luzhetskyy A. 2014. Actinomycetes biosynthetic potential: how to bridge in silico and in vivo? J. Ind. Microbiol. Biotechnol. 41: 387-402.   DOI
26 Viollier PH, Kelemen GH, Dale GE, Nguyen KT, Buttner MJ, Thompson CJ. 2003. Specialized osmotic stress response systems involve multiple SigB-like sigma factors in Streptomyces coelicolor. Mol. Microbiol. 47: 699-714.   DOI
27 Zhao Y, Wu J, Yang J, Sun S, Xiao J, Yu J. 2012. PGAP: pangenomes analysis pipeline. Bioinformatics. 28: 416-418.   DOI
28 Liu G, Chater KF, Chandra G, Niu G, Tan H. 2013. Molecular regulation of antibiotic biosynthesis in Streptomyces. Microbiol. Mol. Biol. Rev. 77: 112-143.   DOI
29 Zhou Z, Gu J, Li Y-Q, Wang Y. 2012. Genome plasticity and systems evolution in Streptomyces. BMC Bioinformatics. 13 (Suppl. 10): S8.   DOI
30 Komatsu M, Uchiyama T, Omura S, Cane DE, Ikeda H. 2010. Genome-minimized Streptomyces host for the heterologous expression of secondary metabolism. Proc. Natl. Acad. Sci. USA 107: 2646-2651.   DOI
31 Paget MS, Molle V, Cohen G, Aharonowitz Y, Buttner MJ. 2001. Defining the disulphide stress response in Streptomyces coelicolor A3(2): identification of the sigmaR regulon. Mol. Microbiol. 42: 1007-1020.   DOI
32 Poralla K, Muth G, Hartner T. 2000. Hopanoids are formed during transition from substrate to aerial hyphae in Streptomyces coelicolor A3(2). FEMS Microbiol. Lett. 189: 93-95.   DOI