• Title/Summary/Keyword: stress estimation

Search Result 993, Processing Time 0.03 seconds

Evaluation of Local Erosion Characteristics of Fine-Grained Soils in the West Coast Area (서해안 세립토의 국지적 침식특성 평가)

  • Kwak, Kiseok;Lee, Juhyung;Park, Jae Hyun;Woo, Hyo Seop
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.5C
    • /
    • pp.323-331
    • /
    • 2006
  • It is a recent worldwide trend that erosion characteristics of soil, the resistance factor against scour, are quantified and considered in the estimation of scour depths in fine-grained soils. As part of the efforts, local erosion characteristics on fine-grained soils of the West Coast area are analyzed through scour rate experiments, where a lot of sea-crossing long-span bridges are planned and being constructed in recent years. Four sites including Incheon Bridge, Choji Bridge, Hwankyung Bridge, and Janghang area are finally selected for this study and the scour rate tests are performed using 34 undisturbed soil samples from the sites. The critical shear stresses which represent erodibility of the soil tend to be proportional to the undrained shear strength values. The relative ability of cohesive fine-grained soils to resist erosion is assumed to be higher than that of noncohesive soils. Quantified local erosion characteristics of fine-grained soils in the West Coast area are presented in forms of charts showing relationships between scour rates and shear stresses, and suggested as basic data for the estimation of scour depths and design of bridge foundations in the West Coast area.

Estimation of Transient Creep C(t)-integrals for SE(B) Specimen Under Elastic-Plastic-Creep Conditions (탄성-소성-크리프 상태에서 SE(B) 시편의 천이크리프 C(t)-적분 평가)

  • Lee, Han-Sang;Je, Jin-Ho;Kim, Dong-Jun;Kim, Yun-Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.9
    • /
    • pp.851-857
    • /
    • 2015
  • In this paper, we estimate the time-dependent C(t) integrals under elastic-plastic-creep conditions. Finite-element (FE) transient creep analyses have been performed for single-edge-notched-bend (SEB) specimens. We investigate the effect of the initial plasticity on the transient creep by systematically varying the magnitude of the initial step load. We consider both the same stress exponent and different stress exponents in the power-law creep and plasticity to elastic-plastic-creep behavior. To estimate the C(t) integrals, we compare the FE analysis results with those obtained using formulas. In this paper, we propose a modified equation to predict the C(t) integrals for the case of creep exponents that are different from the plastic exponent.

Estimation of Mechanical Properties for Particle Dispersed Composites (입자 분산 복합재료의 기계적 성질 추정)

  • Tak Jin Moon;Dae Soon Im
    • Journal of the Korean Chemical Society
    • /
    • v.26 no.6
    • /
    • pp.414-420
    • /
    • 1982
  • The mechanical properties of nickel particle polyethylene composites were estimated by using a finite element method. Two steps were carried out in this analysis; the first step was to consider an unit model composed of spherical cell in the center of the matrix and the second step was to consider a total model composed of unit model. Two phase and three phase models were used, since another third phase were observed between matrix and nickel particle. Finite element method permits the calculation of the stress and displacement, assuming the arbitrary loads. Elastic modulus, Poisson's ratio and stress distribution of composites were obtained from this output. Comparison of the calculation by finite element method and the experimental results for Ni-filled polyethylene showed good agreement in tensile properties.

  • PDF

A Study on Behavior Analysis of Large-diameter Drilled Shaft by Design Methods in Deep Water Depth Composite Foundation (대수심 대형 복합기초에서 설계기법에 따른 대구경 현장타설말뚝의 거동 분석 연구)

  • Han, Yushik;Choi, Yongkyu
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.1
    • /
    • pp.5-16
    • /
    • 2015
  • In the long span bridge construction, construction cost portion of large scale marine foundation is about 40% (KICTEP, 2007). In this study, designs for deep water depth large composite foundation of a super long span cable-stayed girder bridge of prototype were performed by three design methods (ASD, LRFD, Eurocode) and the behaviors of a large diameter drilled shaft were analyzed and the 3D numerical analysis was performed. As a result, the soft rock socket lengths in allowable stress design estimation method were the longest. The soft rock socket lengths estimated by the design approach 2 among Eurocode and the LRFD were similar. The longer the socket length socketed in the soft rock was, the smaller the axial force acting on a large-diameter drilled shaft head was and the smaller the settlement of drilled shaft was.

Estimation of Friction Angle of Rubble Mound by Centrifuge Model Tests (원심모형시험에 의한 사석재의 내부마찰각 추정)

  • Yoo, Nam-Jae;Park, Byung-Soo;Jeong, GiI-Soo;Lee, Jong-Ho
    • Journal of Industrial Technology
    • /
    • v.22 no.A
    • /
    • pp.153-159
    • /
    • 2002
  • This paper is an experimental work of estimating friction angle of very coarse grained soil such as rubble mound by performing laboratory experiments. Two crushed rocks of rubble mound were used for tests. Triaxial compression tests with drained conditions were performed to measure friction angles of soils prepared by mixing the crushed soil having an identical coefficient of uniformity with different maximum grain size distribution. Centrifuge model experiments with those soils were also performed to measure angle of repose and to estimate friction angle of soil from measuring the slope of slip line in the active stress state. Model tests were carried out by changing the G-levels of 1G and 50G. From triaxial compression tests, the measured value of friction angle of soil is in the range of $41{\sim}57^{\circ}$. The measured value of repose angle is in the range of $32{\sim}35^{\circ}$. The values of friction angle are found not so sensitive to the maximum grain size of soil as long as the coefficient of uniformity is identical. Estimated value of friction angle from measuring the slope of slip line in the active stress state is in the range of $30{\sim}46^{\circ}$. Thus, the estimated angle of friction are found to be greater in the order of the measured angle of repose, the estimated value from the slope of active state, and triaxial compression test results. On the other hand, the measured values of friction angle from triaxial tests were compared with empirical equations, based on the relation between friction angle and void ratio. Equations proposed by Helenelund(l966) and Hansen(1967) found to be relatively reliable to estimate friction angles of soil.

  • PDF

Application of Flat DMT and ANN for Reliable Estimation of Undrained Shear Strength of Korean Soft Clay (국내 연약지반의 신뢰성있는 비배수 전단강도 추정을 위한 flat DMT와 인공신경망 이론의 적용)

  • 변위용;김영상;이승래;정은택
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.5
    • /
    • pp.17-25
    • /
    • 2004
  • The flat dilatometer test (DMT) is a geotechnical tool to estimate in-situ properties of various types of ground materials. The undrained shear strength is known to be the most reliable and useful parameter obtained by DMT. However, the existing relationships which were established for other local deposits depend on the regional geotechnical characteristics. In addition, the flat dilatometer test results have been interpreted using three intermediate indices - material index $(I_D)$, horizontal stress index $(K_D)$, and dilatometer modulus (E$_{D}$) and the undrained shear strength has been estimated merely using the horizontal stress index $(K_D)$. In this paper, the applicability of the flat dilatometer to Korean soft clay deposit has been investigated. Then an artificial neural network was developed to evaluate the undrained shear strength by DMT and the ANN, based on the $p_0, p_1, p_2, {\sigma '}_v$ and porewater pressure. The ANN which adopts the back-propagation algorithm was trained based on the DMT data obtained from Korean soft clay. To investigate the feasibility of ANN model, the prediction results obtained from data which were not used to train the ANN and those obtained from existing relationships were compared.

Shear Strength Estimation of Clean Sands via Shear Wave Velocity (전단파 속도를 통한 모래의 전단강도 예측)

  • Yoo, Jin-Kwon;Park, Duhee
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.9
    • /
    • pp.17-27
    • /
    • 2015
  • We perform a series of experimental tests to evaluate whether the shear strength of clean sands can be reliably predicted from shear wave velocity. Isotropic drained triaxial tests on clean sands reconstituted at different relative densities are performed to measure the shear strength and bender elements are used to measure the shear wave velocity. Laboratory tests reveal that a correlation between shear wave velocity, void ratio, and confining pressure can be made. The correlation can be used to determine the void ratio from measured shear wave velocity, from which the shear strength is predicted. We also show that a unique relationship exists between maximum shear modulus and effective axial stress at failure. The accuracy of the equation can be enhanced by including the normalized confining pressure in the equation. Comparisons between measured and predicted effective friction angle demonstrate that the proposed equation can accurately predict the internal friction angle of granular soils, accounting for the effect of the relative density, from shear wave velocity.

Characterization of Shear Waves in Busan New Port Clay: Estimation of the Coefficients of Shear Wave Velocity (부산 신항 점토의 전단파 특성 연구: 전단파 속도 계수 추정 사례)

  • Lee, Jong-Sub;Kim, Youngseok;Hong, Seungseo;Yoon, Hyung-Koo
    • The Journal of Engineering Geology
    • /
    • v.23 no.4
    • /
    • pp.503-510
    • /
    • 2013
  • Shear wave velocity is widely used as an parameter for investigating subsurface characteristics and for obtaining the design parameters based on theoretical equations. This study seeks to estimate the coefficient of shear wave velocity in Busan clay via laboratory tests. Eight specimens were extracted at depths of 10, 12, 15, 20, 22, 25, 30, and 31 m. The specimens were subjected to the consolidation test to determine the relationship between effective stress and shear wave velocity. The relationship shows a non-linear trend and is similar to the results of a previous study. The coefficient shows constant coverage and a relationship between ${\alpha}$ and ${\beta}$ is suggested. The results demonstrate that this coefficient could be used as a reference value to determine engineering parameters based on the shear wave velocity.

The heart rate variability(HRV) of the headache patients caused by Chiljungsang (칠정상(七情傷)으로 인한 두통 환자의 심박변이도(Heart Rate Variability)에 관한 고찰)

  • Park, Sun-Yong;Choi, Cheol-Hong;Chung, Dae-Kyoo;Ko, Kyung-Mo
    • Journal of Oriental Neuropsychiatry
    • /
    • v.19 no.3
    • /
    • pp.45-54
    • /
    • 2008
  • Objective: To treat psychogenic headache patients, doctors have to amplify on the headache caused by emotional stress to patients, and assist the patients to cope with difficulties. So, we investigated HRV of the headache patients caused by Chiljungsang and would like to apply to the clinical treatment. Method: Our study measured time and frequency domain HRV indicies(5-min resting study) of 123 headache patients caused by emotional stress. Standardized tests of HRV allow a quantitative estimation of autonomic nervous system function. Results & Conclusions: 1. The study classed as aspects of the head pain showed the differences in RMS-SD(square root of mean squared difference of successive NN intervals) band, HF(high frequency) band significantly. 2. The male headache patients showed higher all the indicies except heart rate compared to the female patients, significantly in SDNN(standard deviation of NN interval), TP(total Power), HF band. 3. As the patients grow older, SDNN, RMS-SD band was lower and LF(low frequency) band, LF/HF ratio higher significantly. The beginning age lower, SDNN, RMS-SD band was higher significantly. The duration of the disease longer, LF band, LF/HF ratio was higher significantly.

  • PDF

Estimation of Local Stress Change of Wall-Thinned Pipes due to Fluid Flow (유체유동에 의한 감육배관의 국부응력변화 평가)

  • Kim Young-Jin;Song Ki-Hun;Lee Sang-Min;Chang Yoon-Suk;Choi Jae-Boong
    • Journal of the Korean Institute of Gas
    • /
    • v.10 no.3 s.32
    • /
    • pp.7-12
    • /
    • 2006
  • In this paper, a new evaluation scheme is suggested to estimate load-carrying capacities of wall thinned pipes. At first, computational fluid dynamics analyses employing steady-state and incompressible flow are carried out to determine pressure distributions in accordance with conveying fluid. Then, the variational pressures are applied as input condition of structural finite element analyses to calculate local stresses at the deepest point. The efficiency of proposed scheme was proven from comparison to conventional analyses results and it is recommended to consider the fluid structure interaction effect for exact integrity evaluation.

  • PDF