• Title/Summary/Keyword: stress correction factor

Search Result 161, Processing Time 0.035 seconds

A study on the fatigue crack growth behavior of aluminum alloy weldments in welding residual stress fields (용접잔류응력장 중에서의 Aluminum-Alloy용접재료의 피로균열성장거동 연구)

  • 최용식;정영석
    • Journal of Welding and Joining
    • /
    • v.7 no.1
    • /
    • pp.28-35
    • /
    • 1989
  • The fatigue crack growth behavior in GTA butt welded joints of Al-Alloy 5052-H38 was examined using Single Edge Notched(SEN) specimens. It is well known that welding residual stress has marked influence on fatigue crack growth rate in welded structure. In the general area of fatigue crack growth in the presence of residual stress, it is noted that the correction of stress intensity factor (K) to account for residual stress is important for the determination of both stress intensity factor range(.DELTA.K) and stress ratio(R) during a loading cycle. The crack growth rate(da/dN) in welded joints were correlated with the effective stress intensity factor range(.DELTA.Keff) which was estimated by superposition of the respective stress intensity factors for the residual stress field and for the applied stress. However, redistribution of residual stress occurs during crack growth and its effect is not negligible. In this study, fatigue crack growth characteristics of the welded joints were examined by using superposition of redistributed residual stress and discussed in comparison with the results of the initial welding residual stress superposition.

  • PDF

A Study on the Crack Growth Behavior of a Inclined Crack in a Non-Uniform Thickness Material (두께가 일정하지 않은 재료에서 경사진 균열의 성장거동에 관한 연구)

  • 조명래;표창률;박종주;고명훈
    • Journal of the Korean Society of Safety
    • /
    • v.12 no.4
    • /
    • pp.27-38
    • /
    • 1997
  • The effect of geometry factors on the combined mode stress intensity factor behaviors of a slant crack in a non-uniform thickness material was analysed by 2-dimensional theoretical analysis. The analysis is based on the Laurent's series expansions of complex potentials where the complex coefficients of the series are determined from the compatibility and the equilibrium conditions of the thickness interface and the stress free conditions of the crack surface. In numerical calculations the perturbation technique is employed. The expressions for the crack tip stress intensity factor are given in the form of power series of dimensionless crack length $\lamda$, and the function of crack slant angle $\alpha$ and thickness ratio $\beta$. The results of numerical calculations for each problems are represented as the correction factors F($\lamda$, $\alpha$, $\beta$). The results clearly show the following characteristics : The correction factors of the combined mode stress intensity factors for a non-uniform thickness material can be defined in the form of F($\lamda$, $\alpha$, $\beta$). The stress intensity factor values for a given crack length are decreased with increase of thickness ratio $\beta$.

  • PDF

Analyses of Stress Intensity Factors for Slant Crack Emanation from Circular Inclusion by Boundary Element Method (경계요소법에 의한 원형함유물에서 파생되는 경사균열의 응력확대계수 해석)

  • Park, Sung-Oan;Hwang, Soon-Won
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.7 no.5
    • /
    • pp.72-84
    • /
    • 1998
  • In order ot study the influence of a circular inclusion on a stress field near a crack tip, mutual interference of a slant crack and the circular inclusion is analyzed of a bimaterial inclusion. As the crack emanates at the equivalent slant crack angle the correction factors FⅠ and FⅡ for the inclusion wit small Young's modulus were found to decrease as the inclusion radius increased. The correction factors for inclusion with large Young's modulus increase as the inclusion radius increases at the equivalent radius of the inclusion, the correction factors decrease as the slant crack angle increases for the aspect ratio $\frac{c}{W}$ = 0.1 irrespective of the Young's modulus. For $\frac{c}{W}$ greater than 0.2, they increase as the slant crack angle increases. There is no influence of stress mutual interfce after crack emanates beyond the inclusion radius.

  • PDF

Interaction of thermal stress with mechanical stress in circumferentially cracked pipe (원주방향 균열배관에 대한 열하중 및 기계하중의 상호 작용)

  • Song, Tae-Kwang;Oh, Chang-Kyun;Kim, Yun-Jae
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.327-332
    • /
    • 2008
  • For the cracked component under combined primary and secondary stress, an interacion between the loads occurs and the secondary stress is relaxed by the primary load. To account for this phenomena, R6 code provides the correction factor which is called V-factor. However, evaluation corrected with V-factor need to be examined for its conservatism. In this paper the conservatism of the current V-factor is examined for the circumferentially cracked pipe under the combined load and new evaluation method is proposed to reduce the conservatism.

  • PDF

Preshear Influence for Liquefaction Resistance in Sand (사질지반에서 액상화 저항에 대한 선행전단응력의 영향)

  • 윤여원;김한범;김방식
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.315-322
    • /
    • 2003
  • Cyclic simple shear tests were performed to find out the effect of preshear on dynamic strength of the sandy soil. Tests were performed for the specimens with 40% and 60% of relative density, under three different effective vertical stress of 50, 100 and 200kPa. For 50 and 100kPa, preshear ratios 0.00, 0.08, 0.12 and 0.16 were given, respectively, For low and high relative densities, two different results are shown in dynamic tests. Under the dense conditions, the maximum shear stress ratio($\tau$$\_$cyc//$\sigma$$\_$vo/) and the cyclic shear stress ratio($\tau$$\_$cyc//$\sigma$$\_$vo/) causing a certain shear strain increase with augmenting preshear ratio(${\alpha}$). However, the maximum shear stress ratio and the cyclic shear stress ratio increase or decrease with increasing preshear ratio under the loose conditions. Correction factor(K$\_$${\alpha}$/) for preshear increases at an early stage and then decreases with increasing preshear ratio at loose condition and increase with increasing preshear ratio at dense condition. Correction factor (K$\_$${\alpha}$,Max/) for preshear increases with the increasing preshear ratio irrespective of relative density, and the value of has same behavior as K$\_$${\alpha}$/.

  • PDF

A Single-Stage Power Factor Correction Converter for 90-265$V_{rms}$ Line Applications (90-265$V_{rms}$ 입력범위를 갖는 단일전력단 역률개선 컨버터)

  • 구관본
    • Proceedings of the KIPE Conference
    • /
    • 2000.07a
    • /
    • pp.145-149
    • /
    • 2000
  • A single-stage power factor correction AC/DC converter with a simple link voltage suppressing circuit (LVSC) for the universal line application is proposed. Using this simple circuit a low link voltage can be realized without deadbands at line zero-crossings. The proposed converter is analyzed and a prototype converter with 5C, 12V output is implemented to verify the performance. The experimental results show that the link voltage stress and efficiency are about 447V and 81%, respectively.

  • PDF

An Improved Method for Determining Response Correction Factor in Bridge Load Rating (교량응력보정계수 산정방법 개선)

  • 신재인;이상순;이상달
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10b
    • /
    • pp.1273-1278
    • /
    • 2000
  • Bridge load rating calculations provide a basis for determining the safe load capacity of bridge. Load rating requires engineering judgement in determining a rating value that is applicable to maintaining the safe use of the bridge and arriving at posting and permit decisions. Load testing is an effective means in calculating the rating value of bridge. In Korea, load carrying capacity of bridge is modified by stress modification factor that is determined from comparisons of measured values and analysis results The stress modification factor may be corrupted by vehicle location error that is defined as the gap of test vehicle location between load testing and analysis. In this study, the effects of vehicle location error to structural response and stress modification factor are investigated, and a new method for evaluating stress modification factor is proposed. The random data analysis shows that the proposed method is less sensitive to vehicle location error than the present method.

A New Power Factor Correction Circuit Using Boost Converter (부스트 컨버터를 이용한 새로운 역율 개선회로)

  • 김만고
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.21 no.2
    • /
    • pp.178-185
    • /
    • 1997
  • According to the wide - spread use of rectifier in electronic equipments, such problems as electronic components failures or equipment disorders have been occurred due to current harmonics. To overcome these problems, power factor correction circuits employing boost converter have been used. The high switching stress of boost converter can be reduced by snubber circuit. Recently, research activities in snubber circuits have been directed to energy recovery snubber for improving the efficiency of power converter. In this study, a new passive snubber circuit which can recover trapped snubber energy without added control is proposed for boost converter. The control of boost converter with proposed snubber is the same as the conventional one. In addition, the energy recovery circuit can be implemented with a few passive components. The circuit operation is confirmed through simulation.

  • PDF

Stress concentration factors for finite orthotropic graphite/E laminates with a circular hole (圓孔 이 있는 有限 直交異方性 Graphite / E Laminate 의 應力集中係數)

  • 홍창선
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.4 no.3
    • /
    • pp.113-118
    • /
    • 1980
  • Stresses were calculated for finite-width orthotropic laminates with a circular hole and remote uniaxial loading using a two-dimensional finite-element analysis with both uniform stress and uniform displacement boundary conditions. Five different laminates were analyzed: quasi-isotropic [0.deg./.+-.45.deg./90.deg.].$\_$s/, 0.deg., 90.deg., [0.deg./90.deg.]$\_$s/, and [.+-.45.deg.]$\_$s/, Computed results are presented for selected combinations of hole diameter-sheet-width ratio d/w and length-to width ratio L/w. For small L/w values, the stress-concentration factors K$\_$tn/ were significantly different for the uniform stress and uniform displacement boundary conditions. Typically, for the uniform stress conditions, the K$\_$tn/ values were much larger than for the infinite-strip reference conditions; however, for the uniform displacement conditon, they were only slighty smaller than for this reference. The results for long strips are also presented as width-correction factor. For d/w.leg.33, these width-correction factors are nearly equal for all five laminates.

Prediction of Gear Bending Fatigue Life of Electro-mechanical Actuator for Aircraft Through Finite Element Analysis

  • Kim, Taehyung;Seok, Taehyeon;Kwon, Soon-hyeong;Lee, Byung-ho;Kwon, Byung-gi;Kwon, Jun-yong;Cheong, Seong-kyun
    • Journal of Aerospace System Engineering
    • /
    • v.14 no.6
    • /
    • pp.58-67
    • /
    • 2020
  • In this study, finite element fatigue analysis combined with a fatigue correlation factor is proposed to predict the bending fatigue life of a gear in an electro-mechanical aircraft actuator. First, stress-life curves are obtained for the gear material via a round bar fatigue test. Subsequently, stochastic stress-life (P-S-N) curves are derived for 50% and 1% failure probabilities, separately. The curves are applied to the fatigue analysis model of a single gear tooth, and the effect of the fatigue correction factor is analyzed. The analytical P-S-N curves reflecting the fatigue correction factor matched the experimental data. This shows that the analytical fatigue life is reliable and that the analysis technique is effective.