• 제목/요약/키워드: stress and strain distributions

검색결과 205건 처리시간 0.023초

경량화된 이중상 구조의 중공 형태 변화에 따른 변형률 분포 분석 (Analysis of Strain Distribution According to Change in the Vacancy Shape of the Lightweight Dual-Phase Structure)

  • 이정아;김용주;정상국;김형섭
    • 소성∙가공
    • /
    • 제31권5호
    • /
    • pp.267-272
    • /
    • 2022
  • A dual-phase structure refers to a material with two different phases of components or crystal structures. In this study, we analyze the stress distributions for harmonic and composite structured materials which are a kind of dual-phase structure materials. The finite element method (FEM) was used to progress compression test to analyze the strain distribution, and rather than constituted of a fully dense material, a dual-phase structure was designed to make a lightweight structure that has different shapes and volumes of vacancy in each case. As a result of each case, the dual-phase structured materials showed different stress distribution patterns and based on this, the cause was identified through the research.

열간분말단조 공정의 열탄소성 유한요소해석 (Thermo-Elasto-Plastic Finite Element Analysis of Powder Hot Forging)

  • 김형섭
    • 한국분말재료학회지
    • /
    • 제4권2호
    • /
    • pp.83-89
    • /
    • 1997
  • A finite element analysis to solve the coupled thermomechanical problem in the plane strain upsetting of the porous metals was performed. The analysis was formulated using the yield function advanced by Lee and kim and developed using the thermo-elasto-plastic time integration procedure. The density and temperature dependent thermal and mechanical properties of porous metals were considered. The internal heat generation by the plastic deformation and the changing thermal boundary conditions corresponding to the geometry were incorporated in the program. The distributions of the stress, strain, pressure, density and temperature were predicted during the free resting period, deformation period and dwelling period of the forging process.

  • PDF

Mechanical analysis of surface-coated zircaloy cladding

  • Lee, Youho;Lee, Jeong Ik;NO, Hee Cheon
    • Nuclear Engineering and Technology
    • /
    • 제49권5호
    • /
    • pp.1031-1043
    • /
    • 2017
  • A structural model for stress distributions of coated Zircaloy subjected to realistic incore pressure difference, thermal expansion, irradiation-induced axial growth, and creep has been developed in this study. In normal operation, the structural integrity of coating layers is anticipated to be significantly challenged with increasing burnup. Strain mismatch between the zircaloy and the coated layer, due to their different irradiation-induced axial growth, and creep deformation are found to be the most dominant causes of stress. This study suggests that the compatibility of the high temperature irradiation-induced strains (axial growth and creep) between zircaloy and the coating layer and the capability to undergo plastic strain should be taken as key metrics, along with the traditional focus on chemical protectiveness.

파이프 원주방향 용접부의 잔류응력 연구 (A study on the residual stresses in circumferential welds of the pipes)

  • 남궁재관;홍재학
    • 대한기계학회논문집
    • /
    • 제15권2호
    • /
    • pp.693-702
    • /
    • 1991
  • The existence of residual stress in the circumferential butt welded pipes is one of the most important problems concerning stress corrosion cracking in service. In this paper, the residual stress distributions in three kinds of circumferential butt welded pipes were measured by the hole drilling strain gage method and calculation using finite element method is performed and its results are compared with the experiments. At the inner surface of the pipe region near the center line of welding is under high tensile residual stress. However, as the distance from the center line of welding increases, the tensile component decreases and finally becomes compressive residual stress at region far away from the center line of welding. The longitudinal residual stress at the outer surface is compressive regardless of the diameter of pipe and the circumferential stress is changed rom compressive to tensile as pipe diameter increases. The results also demonstrate that the residual stress is mainly caused by self restraint bending force in the pipe welding.

파이프 원주방향 용접부의 잔류응력분포 특성에 관한 실험적 연구 (An Experimental Study on the Residual Stress Distribution at Circumferential Welds in Pipes)

  • 남궁재관;홍재학
    • 한국정밀공학회지
    • /
    • 제8권1호
    • /
    • pp.41-49
    • /
    • 1991
  • A knowledge of the resdual stress distribution at circumferential weldments can normally increase the accuracy of a fracture assessment in pipe line. In this paper, we present the measurements about the residual stress distributions at three kinds of circumferential butt welded pipes using the holl drilling strain gage method. By this experiment, we have obtined the following characteristics. At the inner surface of the pipe region near the center line of welding is under high tensile residual stress. However, as the distance from the center line of welding increases, the tensile component decreases and finally becomes compressive residual stress at region far away from the center line of welding. The longitudinal residual stress at the outer surface is compressive regardless of the diameter of pipe and the circumferential stress is changed from compressive to tensile as pipe diameter increases. The results also demonstrate that the residual stress is mainly caused by self-restraint bending force in the pipe welding.

  • PDF

평판용접에 관한 평면변형 열탄소성 해석 (The Plane-Deformation Thermal Elasto-Plastic Analysis During Welding of Plate)

  • 방한서;한길영
    • 한국해양공학회지
    • /
    • 제8권1호
    • /
    • pp.33-40
    • /
    • 1994
  • Welding of structure produces welding residual stresses which influence buckling strength, brittle fracture strength and cold crack on the weld parts. Therefore, it is very important to accurately analyze the residual stress before welding in order to guarantee the safety of weldment. If the weld length is long enough compared to the thickness and the breadth of plate, thermal and mechanical behaviors in the middle portion of the plate are assumed to be uniform along the thickness direction(z-axis). Thus, the following conditions(so-called plane deformation) can be assumed for the plate except near its end;1) distributions of stress and strain are independent on the z-axis;2) plane normal to z-axis before deformation remains plane during and after deformation. In this paper, plane-deformation thermal elasto-plastic problem is formulated by being based on the finite element method. Moreover special regards and paid to the fact that material properties in elastic and plastic region are temperature-dependence. And the method to solve the plane-deformation thermal elasto-plastic problem is shown by using the incremental technique. From the results of analysis, the characterisics of distribution of welding residual stress and plastic strain with the production mechanism are clarified.

  • PDF

Effect of thermal gradients on stress/strain distributions in a thin circular symmetric plate

  • Aleksandrova, Nelli N.
    • Structural Engineering and Mechanics
    • /
    • 제58권4호
    • /
    • pp.627-639
    • /
    • 2016
  • The analysis of thermally induced stresses in engineering structures is a very important and necessary task with respect to design and modeling of pressurized containers, heat exchangers, aircrafts segments, etc. to prevent them from failure and improve working conditions. So, the purpose of this study is to investigate elasto-plastic thermal stresses and deformations in a thin annular plate embedded into rigid container. To this end, analytical research devoted to mathematically and physically rigorous stress/strain analysis is performed. In order to evaluate the effect of logarithmic thermal gradients, commonly applied to structures which incorporate thin plate geometries, different thermal parameters such as temperature mismatch and varying constraint temperature were introduced into the model of elastic perfectly-plastic annular plate obeying the von Mises yield criterion with its associated flow rule. The results obtained may be used in sensitive to temperature differences aircraft structures where the thermal effects on equipment must be kept in mind.

A Closed-Form Solution for Circular Openings in an Elastic-Brittle-Plastic Extended Spatial Mobilized Plane Medium

  • Wu, Chuangzhou;Guo, Wei;Jang, Bo-An
    • 지질공학
    • /
    • 제32권1호
    • /
    • pp.1-12
    • /
    • 2022
  • Based on the extended spatial mobilization plane (SMP) criterion, we present an elastic-brittle-plastic solution for an axisymmetric cylindrical tunnel. The influences of the intermediate principal compressive stress and material strain-softening behavior are considered. Closed-form formulas for the critical support force, radius of plastic zone, and distributions of stress and displacement in surrounding rock are proposed. The elastic-plastic solution based on SMP is compared with the Kastner solution to verify the credibility of the obtained elastic-plastic solution. The elastic-brittle-plastic solution following the SMP criterion and the current solution based on the Mohr-Coulomb criterion are also compared. The rock strain-softening rate and the intermediate principal stress affect the stability of the surrounding rock. The results provide guidance for optimizing the design of support systems for tunnels.

탈수속도 변화에 따른 세탁기 클러치하우징의 강도해석 (Stress Analysis of the Clutch Housing of a Washing Machine)

  • 김완두;이학주;한승우
    • 연구논문집
    • /
    • 통권26호
    • /
    • pp.33-42
    • /
    • 1996
  • The transmission system of a washing machine which is called by the clutch is one of the most important components to preserve the performance. The clutch housing has a role to guard and mount the transmission system on the frame of the machine. The load which is applied on the clutch housing depends on the operating conditions. Nowadays the dehydration speed is higher and higher in order to improve the efficiency. In this study, the strains on the predicted weak positions were measured using the strain gage and its measuring equipment. The relationships between the dehydration speeds and the maximum principal strains were obtained. Finite element analysis is executed to acquire the effect of the dehydration speed on the stress of the clutch housing. The distributions of the equivalent stress and the maximum stresses under the various speeds, the various loading directions and the various thickness of the clutch housing were obtained.

  • PDF

웹 기반의 가상 프레스 개발 (A Development of Wet-based Virtual Press)

  • 정완진;장동영;이학림;최석우;나경환
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.121-124
    • /
    • 2002
  • This paper resents a virtual forming system to simulate deep drawing process for stress-strain information by utilizing virtual system designed using Virtual Reality Modeling Language (VRML) and computer aided analysis (CAE) tool. The CAE tool to calculate stress, strain, and deformation is designed using Finite Element Method. Stress distributions and deformation profiles as well as the operation of forming machine can be simulated and visualized in the web. The developed system consists of three modules, input module, virtual forming machine module, and output module. The input nodule was designed using HTML and ASP. The input data for FEM calculation is directed to the forming machine module for calculation. The results from the forming machine module can be visualized through output module as well as the forming process simulation.

  • PDF