Browse > Article
http://dx.doi.org/10.1016/j.net.2017.03.012

Mechanical analysis of surface-coated zircaloy cladding  

Lee, Youho (Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology (KAIST))
Lee, Jeong Ik (Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology (KAIST))
NO, Hee Cheon (Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology (KAIST))
Publication Information
Nuclear Engineering and Technology / v.49, no.5, 2017 , pp. 1031-1043 More about this Journal
Abstract
A structural model for stress distributions of coated Zircaloy subjected to realistic incore pressure difference, thermal expansion, irradiation-induced axial growth, and creep has been developed in this study. In normal operation, the structural integrity of coating layers is anticipated to be significantly challenged with increasing burnup. Strain mismatch between the zircaloy and the coated layer, due to their different irradiation-induced axial growth, and creep deformation are found to be the most dominant causes of stress. This study suggests that the compatibility of the high temperature irradiation-induced strains (axial growth and creep) between zircaloy and the coating layer and the capability to undergo plastic strain should be taken as key metrics, along with the traditional focus on chemical protectiveness.
Keywords
Accident Tolerant Fuel; Cladding; Stress; Coating;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 D.M. Carpenter, G.E. Kohse, M.S. Kazimi, An Assessment of Silicon Carbide as a Cladding Material for Light Water Reactors, MIT Center for Advanced Nuclear Energy Systems, Cambridge, 2010. MIT-NFC-TR-132.
2 J.P. Dobisesky, E.E. Pilat, M.S. Kazimi, Reactor Physics Considerations for Implementing Silicon Carbide Cladding into a PWR Environment, MIT Center for Advanced Nuclear Energy Systems, Cambridge, 2011. MIT-ANPTR-136.
3 Thermal Alloys Engineering, Chemical composition and Properties of FeCrAl Alloys. [Internet]. Available from: http://www.thermalloys.com/index.php/en/alloys/fecralalloys.html.
4 KANTHAL. Datasheet for Kanthal A-1 (FeCrAl alloy). [Internet]. Available from: http://kanthal.com/en/products/material-datasheets/strip/kanthal-a-1/.
5 The Engineering ToolBox, Young Modulus of Elasticity for Metals and Alloys. [Internet]. Available from: http://www.engineeringtoolbox.com/youngmodulus-d_773.html.
6 R. Boyer, G. Welsch, E.W. Collings, Material Properties Handbook: Titanium Alloys, ASM International, OH, USA, 1994.
7 B.A. Latella, B.K. Gan, K.E. Davies, D.R. McKenzie, D.G. McCulloch, Titanium nitride/vanadium nitride alloy coatings: mechanical properties and adhesion characteristics, Surf. Coat. Technol. 200 (2006) 3605-3611.   DOI
8 J.W. Hutchinson, Plasticity at the micron scale, Int. J. Solid. Struct. 37 (2000) 225-238.   DOI
9 T. Namazu, S. Inoue, H. Takemoto, K. Koterazawa, Mechanical properties of polycrystalline titanium nitride films measured by XRD tensile testing, IEEJ Trans. Sensors Micromachines 125 (2005) 374-379.   DOI
10 S.H. Kim, H. Park, K.H. Lee, S.H. Jee, D.-J. Kim, Y.S. Yoon, H.B. Chae, Structure and mechanical properties of titanium nitride thin films grown by reactive pulsed laser deposition, J. Ceram. Process. Res. 10 (2009) 49-53.
11 FRAPCON-3.5, A Computer Code for the Calculation of Steady-State, Thermal-Mechanical Behavior of Oxide Fuel Rods for High Burnup (NUREG/CR-7022), Pacific Northwest National Laboratory, Richland, WA, USA, 2014.
12 Material Property Correlations, Comparisons between FRAPCON-3.5, FRAPTRAN-1.5, and MATPRO (NUREG/CR-7024), Pacific Northwest National Laboratory, Richland, WA, USA, 2014.
13 M. Ben-Belgacem, V. Richet, K.A. Terrani, Y. Katoh, L.L. Snead, Thermo-mechanical analysis of LWR SiC/SiC composite cladding, J. Nucl. Mater. 447 (2014) 125-142.   DOI
14 J.D. Stempien, D.M. Carpenter, G. Kohse, M.S. Kazimi, Behavior of Triplex Silicon Carbide Fuel Cladding Designs Tested Under Simulated PWR Conditions, MIT Center for Advanced Nuclear Energy Systems, 2011. Cambridge.
15 K.A. Terrani, B.A. Pint, M.P. Chad, M.S. Chinthaka, L.L. Snead, Y. Katoh, Silicon carbide oxidation in steam up to 2 MPa, J. Am. Ceram. Soc. 97 (2014) 2331-2352.   DOI
16 B.A. Pint, K.A. Terrani, M.P. Brady, T. Cheng, J.R. Keiser, High temperature oxidation of fuel cladding candidate materials in steam-hydrogen environments, J. Nucl. Mater. 440 (2013) 420-427.   DOI
17 L.L. Snead, T. Nozawa, Y. Katoh, T.-S. Byun, S. Kondo, D.A. Petti, Handbook of SiC properties for fuel performance modeling, J. Nucl. Mater. 371 (2007) 329-377.   DOI
18 L.L. Snead, Issues and Overview of SiC-based Fuel and Clad Technologies in Support of Accident Tolerant Fuel Development, SiC/Accident Tolerant Fuel (ATF) Meeting, NSE Department Seminar, MIT Department of Nuclear Science and Engineering, Cambridge, Massachusetts, US, 2013, May 1.
19 Y. Katoh, L.L. Snead, C.H. Henager Jr., T. Nozawa, T. Hinoki, A. Ivekovic, S. Novak, Current status and recent research achievements in SiC/SiC composites, J. Nucl. Mater. 455 (2014) 387-397.   DOI
20 L.L. Snead, T. Nozawa, M. Ferraris, Y. Katoh, R. Shinavski, M. Sawan, Silicon carbide composites as fusion power reactor structural materials, J. Nucl. Mater. 417 (2011) 330-339.   DOI
21 D.A. Bloore, E.E. Pilat, M.S. Kazimi, Reactor Physics Assessment of Thick Silicon Carbide Clad PWR Fuels (MIT-ANP-TR-148), MIT Center for Advanced Nuclear Energy Systems, Cambridge, 2013.
22 AREVA Federal Services, LLC, Interim Analysis Report for Enhanced Accident Tolerant Fuels (RPT-3009595-000), AREVA, 2013.
23 M.F. Ashby, D. Jones, Engineering Materials 1: An Introduction to Properties, Applications and Design, third ed., Elsevier Butterworth-Heinemann, Boston, 2005.
24 R.F. Barron, B.R. Barron, Design for Thermal Stresses, John Wiley & Sons, New Jersey, 2012.
25 T. Furuta, S. Kawasakim, M. Hashimoto, T. Otomo, Zircaloy-Clad fuel rod burst behavior under simulated loss-of-coolant condition in pressurized water reactors, J. Nucl. Sci. Technol. 15 (1978) 736-744.   DOI
26 Y. Lee, T. McKrell, M.S. Kazimi, Safety of Light Water Reactor Fuel with Silicon Carbide Cladding, MIT Center for Advanced Nuclear Energy Systems, Cambridge, 2013. MIT-ANP-TR-150.
27 H.M. Chung, Fuel behavior under loss-of-coolant accident situations, Nucl. Eng. Technol. 37 (2005) 327-362.
28 K.A. Terrani, S.J. Zinkle, L.L. Snead, Advanced oxidation-resistant iron-based alloys for LWR fuel cladding, J. Nucl. Mater. 448 (2014) 420-435.   DOI
29 K. Barret, S. Bragg-Sitton, D. Galicki, Advanced LWR Nuclear Fuel Cladding System Development Trade-off Study (INL/EXT-12-27090), Idaho National Laboratory, 2012.
30 Y. Katoh, L.L. Snead, C.H. Henager Jr., A. Hasegawa, A. Kohyama, B. Riccardi, H. Hegeman, Current status and critical issues for development of SiC composites for fusion applications, J. Nucl. Mater. (2007) 659-671.
31 Y. Katoh, L.L. Snead, T. Nozawa, S. Kondo, J.T. Busby, Thermophysical and mechanical properties of near-stoichiometric fiber CVI SiC/SiC composites after neutron irradiation at elevated temperatures, J. Nucl. Mater. 403 (2010) 48-61.   DOI
32 Y. Katoh, T. Nozawa, L.L. Snead, K. Ozawa, T. Hiroyasu, Stability of SiC and its composites at high neutron fluence, J. Nucl. Mater. 417 (2011) 400-405.   DOI
33 Y. Katoh, L.L. Snead, C.M. Parish, T. Hinoki, Observation and possible mechanism of irradiation induced creep in ceramics, J. Nucl. Mater. 434 (2013) 141-151.   DOI
34 G. Newsome, L.L. Snead, T. Hinoki, Y. Katoh, D. Peters, Evaluation of neutron irradiated silicon carbide and silicon carbide composites, J. Nucl. Mater. 371 (2007) 76-89.   DOI
35 X. Hu, K.A. Terrani, B.D. Wirth, L.L. Snead, Hydrogen permeation in FeCrAl alloys for LWR cladding application, J. Nucl. Mater. 461 (2015) 282-291.   DOI
36 Y. Katoh, K. Ozawa, C. Shih, T. Nozawa, R.J. Shinavski, A. Hasegawa, L.L. Snead, Continuous SiC fiber, CVI SiC matrix composites for nuclear applications: Properties and irradiation effects, J. Nucl. Mater. 448 (2014) 448-476.   DOI
37 20 GWd SiC Clad Fuel Pin Examination. Report, ORNL/TM-2014/102, Oakridge National Laboratory (ORNL), 2014.
38 K.A. Terrani, Y. Yang, Y.-J. Kim, R. Rebak, H.M. Meyer III, T.J. Gerczak, Hydrothermal corrosion of SiC in LWR coolant environments in the absence of irradiation, J. Nucl. Mater. 465 (2015) 488-498.   DOI
39 Personal correspondence, Center for Advanced Nuclear Energy Systems, Massachusetts Institute of Technology, Cambridge, U.S.A, 2013.
40 L. Braase, S. Bragg-Sitton, Advanced Fuels Campaign Cladding & Coatings Meeting Summary, INL/EXT-13-28628, Idaho National Laboratory, 2013.
41 J.Y. Park, I.H. Kim, Y.I. Jung, H.G. Kim, D.J. Park, B.K. Choi, High temperature steam oxidation of Al3Ti-based alloys for the oxidation-resistant surface layer on Zr fuel claddings, J. Nucl. Mater. 437 (2013) 75-80.   DOI
42 Y.H. Koo, J.H. Yang, J.Y. Park, K.S. Kim, H.G. Kim, D.J. Kim, Y.I. Jung, K.W. Song, KAERI's development of LWR accident-tolerant Fuel, Nuscl. Technol. 186 (2014) 295-304.   DOI
43 H.G. Kim, I.H. Kim, Y.I. Jung, D.J. Park, J.Y. Park, Y.H. Koo, High-Temperature Oxidation Behavior of Cr-Coated Zirconium Alloy, Transaction of TopFuel (2013), Charlotte, North Carolina, September 15-19, 2013.
44 A.M. Yacout, M. Pellin, M.C. Billone, Development and Testing of Nanolaminate Coatings for Conventional LWR Cladding, Transaction of TopFuel (2013), Charlotte, North Carolina, September 15-19, 2013.
45 F. Khatkhatay, L. Jiao, J. Jian, W. Zhang, Z. Jia, J. Gan, H. Zhang, X. Zhang, H. Wang, Superior corrosion resistance properties of TiN-based coatings on Zircaloy tubes in supercritical water, J. Nucl. Mater. 451 (2014) 346-351.   DOI
46 S. Lee, C. Park, Y. Lim, H. Kwon, Influences of laser surface alloying with niobium (Nb) on the corrosion resistance of Zircaloy-4, J. Nucl. Mater. 321 (2003) 177-183.   DOI
47 Y. Al-Olayyan, G.E. Fuchs, R. Baney, J. Tulenko, The effect of Zircaloy-4 substrate surface condition on the adhesion strength and corrosion of SiC coatings, J. Nucl. Mater. 346 (2005) 109-119.   DOI
48 U. Wiklund, P. Hedenqvist, S. Hogmark, B. Stridh, M. Arbell, Multilayer coatings as corrosion protection of Zircaloy, Surf. Coat. Technol. 86-87 (1996) 530-534.   DOI
49 T. Cheng, J.R. Keiser, M.P. Brady, K.A. Terrani, B.A. Pint, Oxidation of fuel cladding candidate materials in steam environments at high temperature and pressure, J. Nucl. Mater. 427 (2012) 396-400.   DOI
50 R.V. Nieuwenhove, K. Daub, H. Nordin, Investigation of the Impact of Coatings on Corrosion and Hydrogen Uptake of Nuclear Components, Presentation slides, NUMAT (Nuclear Materials) Conference, Florida, October, 2014.
51 A.T. Nelson, E.S. Sooby, Y.-J. Kim, B. Cheng, S.A. Maloy, High temperature oxidation of molybdenum in water vapor environments, J. Nucl. Mater. 448 (2014) 441-447.   DOI
52 S. Bragg-Sitton, Development of Advanced Accident-tolerant Fuels for Commercial LWRs, Nuclear News, March 2014, pp. 83-91.
53 B. Cheng, J. Deshon, Molybdenum-Based Fuel Cladding for Improved Accident Tolerance, EPRI (Electric Power Research Institute), June 2015.
54 J.H. Sung, T.H. Kim, S.S. Kim, Fretting damage of TiN coated zircaloy-4 tube, Wear 250 (2001) 658-664.   DOI
55 U. Holzwarth, H. Stamm, Mechanical and thermomechanical properties of commercially pure chromium and chromium alloys, J. Nucl. Mater. 300 (2002) 161-177.   DOI
56 A. Masolin, P.-O. Bouchard, R. Martini, M. Bernacki, Thermo-mechanical and fracture properties in single-crystal silicon, J. Mater. Sci. 48 (2013) 979-988.   DOI
57 O. Tabata, T. Tsuchiya, in: J.G. Korvink, Oliver Paul (Eds.), Chapter 2. Material Properties: Measurement and Data, MEMS a practical guide to design, analysis and applications, William Andrew, Inc, NY, USA, 2006.
58 R.O. Ritchie, in: Failure of Silicon: Crack Formation and Propagation, Presentation slides, 13th Workshop on Crystalline Solar Cell Materials and Processes, August 2003. Vail, Colorado.
59 K. Petersen, Silicon as a mechanical material, Proceedings of the IEEE 70 (1982) 420-457.   DOI
60 W.G. Luscher, E.R. Gilbert, S.G. Pitman, E.F. Love Jr., Surface modification of Zircaloy-4 substrates with nickel zirconium intermetallics, J. Nucl. Mater. 433 (2013) 514-522.   DOI
61 I. Idarraga-Trujillo, M. Le Flem, J. Brachet, M. Lesaux, D. Hamon, S. Muller, V. Vandenberghe, M. Tupin, E. Papin, E. Monsifrot, A. Billard, F. Schuster, Assessment at CEA of Coated Nuclear Fuel Cladding for LWRs with Increased Margins in LOCA and Beyond LOCA, Transaction of TopFuel (2013), Charlotte, North Carolina, September 15-19, 2013.
62 I. Kim, F. Khatkhatay, L. Jiao, G. Swadener, J.I. Cole, J. Gan, H. Wang, TiN-based coatings on fuel cladding tubes for advanced nuclear reactors, J. Nucl. Mater. 429 (2012) 143-148.   DOI
63 Y. Lee, M.S. Kazimi, A structural model for multi-layered ceramic cylinders and its application to silicon carbide cladding of light water reactor fuel, J. Nucl. Mater. 458 (2015) 87-105.   DOI
64 Y. Lee, T.J. McKrell, M.S. Kazimi, Thermal shock fracture of silicon carbide and its application to LWR fuel cladding performance during reflood, Nucl. Eng. Technol. 45 (2013) 811-820.   DOI
65 Y. Lee, T.J. McKrell, C. Yue, M.S. Kazimi, Safety assessment of SiC cladding oxidation under loss-of-coolant accident conditions in light water reactors, Nucl. Technol. 2 (2013) 210-227.
66 Y. Lee, H.S. Kim, H.C. No, Failure probabilities of SiC clad fuel during a LOCA in public acceptable simple SMR (PASS), Nucl. Eng. Des. 292 (2015) 1-16.   DOI