• Title/Summary/Keyword: stress and strain distribution

Search Result 611, Processing Time 0.03 seconds

Finite Element Analysis of Pilgering Process of Multi-Metallic Layer Composite Fuel Cladding (다중금속복합층 핵연료 피복관의 필거링 공정에 관한 유한 요소 해석 연구)

  • Kim, Taeyong;Lee, Jeonghyeon;Kim, Ji Hyun
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.13 no.2
    • /
    • pp.75-83
    • /
    • 2017
  • In severe accident conditions of light water reactors, the loss of coolant may cause problems in integrity of zirconium fuel cladding. Under the condition of the loss of coolant, the zirconium fuel cladding can be exposed to high temperature steam and reacted with them by producing of hydrogen, which is caused by the failure in oxidation resistance of zirconium cladding materials during the loss of coolant accident scenarios. In order to avoid these problems, we develop a multi-metallic layered composite (MMLC) fuel cladding which compromises between the neutronic advantages of zirconium-based alloys and the accident-tolerance of non-zirconium-based metallic materials. Cold pilgering process is a common tube manufacturing process, which is complex material forming operation in highly non-steady state, where the materials undergo a long series of deformation resulting in both diameter and thickness reduction. During the cold pilgering process, MMLC claddings need to reduce the outside diameter and wall thickness. However, multi-layers of the tube are expected to occur different deformation processes because each layer has different mechanical properties. To improve the utilization of the pilgering process, 3-dimensional computational analyses have been made using a finite element modeling technique. We also analyze the dimensional change, strain and stress distribution at MMLC tube by considering the behavior of rolls such as stroke rate and feed rate.

Thermal stability analysis of solar functionally graded plates on elastic foundation using an efficient hyperbolic shear deformation theory

  • El-Hassar, Sidi Mohamed;Benyoucef, Samir;Heireche, Houari;Tounsi, Abdelouahed
    • Geomechanics and Engineering
    • /
    • v.10 no.3
    • /
    • pp.357-386
    • /
    • 2016
  • In this research work, an exact analytical solution for thermal stability of solar functionally graded rectangular plates subjected to uniform, linear and non-linear temperature rises across the thickness direction is developed. It is assumed that the plate rests on two-parameter elastic foundation and its material properties vary through the thickness of the plate as a power function. The neutral surface position for such plate is determined, and the efficient hyperbolic plate theory based on exact neutral surface position is employed to derive the governing stability equations. The displacement field is chosen based on assumptions that the in-plane and transverse displacements consist of bending and shear components, and the shear components of in-plane displacements give rise to the quadratic distribution of transverse shear stress through the thickness in such a way that shear stresses vanish on the plate surfaces. Therefore, there is no need to use shear correction factor. Just four unknown displacement functions are used in the present theory against five unknown displacement functions used in the corresponding ones. The non-linear strain-displacement relations are also taken into consideration. The influences of many plate parameters on buckling temperature difference will be investigated. Numerical results are presented for the present theory, demonstrating its importance and accuracy in comparison to other theories.

Evolving Problem Analyses of Recent Marek's Disease (최근 진화하는 마렉병의 원인 분석)

  • Jang, H.K.;Park, Y.M.;Cha, S.Y.;Park, J.B.
    • Korean Journal of Poultry Science
    • /
    • v.34 no.4
    • /
    • pp.301-318
    • /
    • 2007
  • Marek's disease (MD) is a highly contagious lymphoproliferative disease of poultry caused by the oncogenic herpesvirus designated Marek's disease virus (MDV). MD has a worldwide distribution and is thought to cause an annual loss over US$ one billion to the poultry industry. Originally described as a paralytic disease, today MD is mostly manifested as an acute disease with tumors in multiple visceral organs. MD is controlled essentially by the widespread use of live vaccines administered either in ovo into 18-day-old embryos or into chicks immediately after they hatch. In spite of the success of the vaccines in reducing the losses from the disease in the last 30 years, MDV strains have shown continuous evolution in virulence acquiring the ability to overcome the immune responses induced by the vaccines. During this period, different generations of MD vaccines have been introduced to protect birds from the increasingly virulent MDV strains. However, the virus will be countered each new vaccine strategy with ever more virulent strains. In spite of this concern, currently field problem from MD is likely to be controled by strategy of using bivalent vaccine. But, potential risk factors for outbreak of MD are still remained in this condition. The major factors can be thought that improper handling and incorrect administration of the vaccine, infection prior to establishment of immunity, suppression of immune system by environmental stress and outbreaks of more virulent MDV strain by using vaccine and genetic resistance of host.

Structural Analysis of S-cam Brake Shoe for Commercial Vehicle by FEM (FEM을 이용한 상용차용 S-cam 브레이크슈의 구조해석)

  • Suh, Chang-Min;Jee, Hyun-Chul
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.4
    • /
    • pp.69-77
    • /
    • 2009
  • Structural analysis of a brake shoe for commercial vehicle was performed using finite element method. Since the strength of a brake shoe is affected by the magnitude and distribution shape of the contact pressure with the drum, the contact pressure between the shoe friction material and drum was calculated using a 2-Dimensional non-linear contact analysis in a state. And the brake was actuated by input air pressure and the drum of it was calculated both stationary and dynamic based on forced torque applied to the drum during the static state analysis. The results of the above analysis were then used as the load boundary conditions for a 3-Dimensional shoe model analysis to determine the maximum strain on the shoes. In the analysis model, the values of tensile test were used for the material properties of the brake shoes and drum, while the values of compression test were used for the friction material. We assumed it as linear variation, even though the properties of friction material were actually non-linear. The experiments were carried out under the same analysis conditions used for fatigue test and under the same brake system which equipped with a brake drum based on the actual axle state in a vehicle. The strains were measured at the same locations where the analysis was performed on the shoes. The obtained results of the experiment matched well with those from the analysis. Consequently, the model used in this study was able to determine the stress at the maximum air pressure at the braking system, thereby a modified shoe model in facilitating was satisfied with the required endurance strength in the vehicle.

A Study on Stress Recovery Analysis of Dimensionally Reducible Composite Beam Structure with High Aspect Ratio using VABS (VABS를 이용한 높은 세장비를 가진 복합재료 보 구조의 차원축소 및 응력복원 해석기법에 대한 연구)

  • Ahn, Sang Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.5
    • /
    • pp.405-411
    • /
    • 2016
  • This paper presented the theory related to a two dimensional linear cross-sectional analysis, recovery relationship and a one-dimensional nonlinear beam analysis for composite beam with initial twist and high aspect ratio. Using VABS including related theory, preceding research data of the composite wing structure has been modeled and compared. Cross-sectional analysis was performed and 1-D beam was modeled at cutting point including all the details of real geometry and material. The 3-D strain distribution and margin of safety at recovery point was calculated based on the global behavior of the 1-D beam analysis and visualize numerical results.

Engineering Characteristics of Crushed Rock for Foundation and Backfill Materials of a Conduit (관거의 기초 및 뒷채움재로 활용하기 위한 석분의 공학적 특성)

  • Moon, Hongduk;Kim, Daeman
    • Journal of the Korean GEO-environmental Society
    • /
    • v.7 no.6
    • /
    • pp.67-73
    • /
    • 2006
  • In this study, basic physical tests and mechanical tests of crushed rock were performed in order to investigate the field application of crushed rock as substitute materials of sand that is commonly being used as foundation and backfill materials of sewer conduit. Particle-size distribution curve of crushed rock is similar to sand and also it is well-graded soil than common sand. Maximum dry unit weight in proctor compaction test for crushed rock is higher than the values of common sand. So we can estimate that the crushed rock has advantages in workability than sand for the backfill compaction after construction of sewer conduit. When we investigate the results of direct shear test and triaxial compression test on the crushed rock, it has a similar value of shear strength parameters to sand at the same stress state and as time goes by, it tends to increase the unconfined compression strength. But, because the strength reaches at the constant value after 6~7 days, we expect that it can absorb the lateral strain of flexible conduit well. All the above experimental results just proves that crushed rock can substitute for sand as backfill materials and foundation of sewer conduit.

  • PDF

Shear correction factors of a new exponential functionally graded porous beams

  • Mohammed Sid Ahmed Houari;Aicha Bessaim;Tarek Merzouki;AhmedAmine Daikh;Aman Garg;Abdelouahed Tounsi;Mohamed A. Eltaher;Mohamed-Ouejdi Belarbi
    • Structural Engineering and Mechanics
    • /
    • v.89 no.1
    • /
    • pp.1-11
    • /
    • 2024
  • This article introduces a novel analytical model for examining the impact of porosity on shear correction factors (SCFs) in functionally graded porous beams (FGPB). The study employs uneven and logarithmic-uneven modified porosity-dependent power-law functions, which are distributed throughout the thickness of the FGP beams. Additionally, a modified exponential-power law function is used to estimate the effective mechanical properties of functionally graded porous beams. The correction factor plays a crucial role in this analysis as it appears as a coefficient in the expression for the transverse shear stress resultant. It compensatesfor the assumption that the shear strain is uniform across the depth of the cross-section. By applying the energy equivalence principle, a general expression for static SCFs in FGPBs is derived. The resulting expression aligns with the findings obtained from Reissner's analysis, particularly when transitioning from the two-dimensional case (plate) to the one-dimensional case (beam). The article presents a convenient algebraic form of the solution and provides new case studies to demonstrate the practicality of the proposed formulation. Numerical results are also presented to illustrate the influence of porosity distribution on SCFs for different types of FGPBs. Furthermore, the article validates the numerical consistency of the mechanical property changesin FG beams without porosity and the SCF by comparing them with available results.

Novel SAW-based pressure sensor on $41^{\circ}YX\;LiNbO_3$ ($41^{\circ}YX\;LiNbO_3$ 기반 SAW 압력센서 개발)

  • Wang, Wen;Lee, Kee-Keun;Hwang, Jung-Soo;Kim, Gen-Young;Yang, Sang-Sik
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.1 s.343
    • /
    • pp.33-40
    • /
    • 2006
  • This paper presents a novel surface acoustic wave (SAW)-based pressure sensor, which is composed of single phase unidirectional transducer (SPUDT), three reflectors, and a deep etched substrate for bonding underneath the diaphragm. Using the coupling of modes (COM) theory, the SAW device was simulated, and the optimized design parameters were extracted. Finite Element Methods (FEM) was utilized to calculate the bending and stress/strain distribution on the diaphragm under a given pressure. Using extracted optimal design parameters, a 440 MHz reflective delay line on 41o YX LiNbO3 was developed. High S/N ratio, shan reflection peaks, and small spurious peaks were observed. The measured S11 results showed a good agreement with simulated results obtained from coupling-of-modes (COM) modeling and Finite Element Method (FEM) analysis.

Displacement tracking of pre-deformed smart structures

  • Irschik, Hans;Krommer, Michael;Zehetner, Christian
    • Smart Structures and Systems
    • /
    • v.18 no.1
    • /
    • pp.139-154
    • /
    • 2016
  • This paper is concerned with the dynamics of hyperelastic solids and structures. We seek for a smart control actuation that produces a desired (prescribed) displacement field in the presence of transient imposed forces. In the literature, this problem is denoted as displacement tracking, or also as shape morphing problem. One talks about shape control, when the displacements to be tracked do vanish. In the present paper, it is assumed that the control actuation is provided by imposed eigenstrains, e.g., by the electric field in piezoelectric actuators, or by thermal actuators, or via analogous physical effects, such as magneto-striction or pre-stress. Structures with a controlled eigenstrain-type actuation belong to the class of smart structures. The action of the eigenstrains can be conveniently characterized by actuation stresses. Our theoretical derivations are performed in the framework of the theory of small incremental dynamic deformations superimposed upon a statically pre-deformed configuration of a hyperelastic solid or structure. We particularly ask for a distribution of incremental actuation stresses, such that the incremental displacements follow exactly a prescribed trajectory field, despite the imposed incremental forces are present. An exact solution of this problem is presented under the assumption that the actuation stresses can be tailored freely and applied everywhere within the body. Extending a Neumann-type solution strategy, it is shown that the actuation stresses due to the distributed control eigenstrains must satisfy certain quasi-static equilibrium conditions, where auxiliary body-forces and auxiliary surface tractions are to be taken into account. The latter auxiliary loading can be directly computed from the imposed forces and from the desired displacement field to be tracked. Hence, despite the problem is a dynamic one, a straightforward computation of proper actuator distributions can be obtained in the framework of quasi-static equilibrium conditions. Necessary conditions for the functioning of this concept are presented. Particularly, it must be required that the intermediate configuration is infinitesimally superstable. Previous results of our group for the case of shape control and displacement tracking in linear elastic structures are included as special cases. The high potential of the solution is demonstrated via Finite Element computations for an irregularly shaped four-corner plate in a state of plain strain.

Experimental Study on the Drawbar Pull and Structural Safety of an Onion Harvester Attached to a Tractor (트랙터 부착형 양파수확기의 작업 속도에 따른 견인 부하와 구조 안정성에 관한 실험적 연구)

  • Shin, Chang-Seop;Kim, Jun-Hee;Ha, Yu-Shin;Park, Tusan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.4
    • /
    • pp.16-25
    • /
    • 2019
  • Recently, due to labor shortages in rural areas within South Korea, the demand for upland-field machinery is growing. In addition, there is a lack of development of systematic performance testing of upland-field machinery. Thus, this study examined structural safety and drawbar pull based on soil properties, as a first step for systematic performance testing on the test bed. First, the properties of soil samples from 10 spots within the experimental site were examined. Second, the strain was measured and converted into stress on 8 points of an onion harvester that are likely to fail. More specifically, the chosen parts are linked to the power, along with the drawbar pull, using a 6-component load cell equipped between the tractor and the onion harvester. The water content of the soil ranged between 5.7%-7.5%, and the strength between 250-1171 kPa. The test soil was subsequently classified into loam soil based on the size distribution ratio of the sieved soil. The onion harvester can be considered as structurally safe based on the derived safety factor and the drawbar pull of 115-1194 kgf, according to the working speed based on agricultural fieldwork.