• Title/Summary/Keyword: streptomyces

Search Result 1,272, Processing Time 0.029 seconds

Identification of Streptomyces species antagonistic to Fusarium solani causing Ginseng root rot (인삼 뿌리썩음 병균, Fusarium solani에 길항적인 Streptomyces species의 동정)

  • 정영윤;정후섭;오승환
    • Korean Journal of Microbiology
    • /
    • v.20 no.2
    • /
    • pp.73-79
    • /
    • 1982
  • Among 131 isolates of Strptomyces obtained from ginseng cultivating soil, the two isolates ST59 and ST129 showing high antagonistic activity to Fusarium solani(Mart.) Appel & We. causing ginseng root rot were identified. The two isolates were identified Streptomyces alboniger Porter, et al. and Strptomyces reseolilacinus Pridham, et al., respectively, based on mrophology, cultural, and physiological characteristics on various culture media. Spore chains of ST59 and ST129 were flexuous(RF) and coiled(S). Spore surfaces of two isolates were all smooth. Aerial mass color of ST59 was white series and ST129 red series.

  • PDF

Identification and Fermentation of a Streptomyces Producing Aurodox Group Antibiotics

  • Kim, Si-Kwan;Yeo, Woon-Hyung;Kim, Sang-Seock
    • Journal of Microbiology and Biotechnology
    • /
    • v.6 no.4
    • /
    • pp.260-264
    • /
    • 1996
  • An isolate, 90-GT-129 was found to produce antibiotics with a selective inhibitory activity against Streptococcus pyogenes and Xanthomonas sp. The isolate formed a gray spiral aerial spore mass with smooth surface. Analysis of the cell wall acid hydrolysate of the isolate revealed presence of LL-di-aminopimelic acid, which indicates that the isolate belongs to a cell wall type Ⅰ actinomycetes. Cultural and physiological characteristics of the isolate placed it in Streptomyces rochei synonym cluster. A comparison of the isolate with 26 reference strains of Streptomyces rochei synonym demonstrated differences in physiological and cultural characteristics.

  • PDF

내열성 포도당 이성화효소를 생산하는 Streptomyces chibaensis J-59의 분리 및 동정

  • 주길재;권기석;이인구
    • Microbiology and Biotechnology Letters
    • /
    • v.25 no.1
    • /
    • pp.15-22
    • /
    • 1997
  • A bacterial strain J-59 was isolated from a humus soil, which produced simultaneously a thermostable glucose isomerase as well as xylanase. The morphological, cultural and physiological characteristics of the isoisomerase strain J-59 were detemined by the use of the media and methods described in International Streptomyces Project. The chemotaxonomic characteristics of the isolated strain J-59 were determined by the analysis of G+C molar % of DNA, diaminipimelic acid, composition of fatty acid and menaquinone. As the results of various examinations, the strain J-59 was identified to be Streptomyces chibaensis. This strain produced glucose isomerase intracellularly and xylanase extracellularly when grown in a medium containing xylan, but it was not able to utilize the xylose or xylan as a carbon source. The glucose isomerase of S. chibaensis J59 was highly thermostable, which retained more than 75% activity in the presence of Co$^{2+}$ at 80$\circ $C for 72 h.

  • PDF

Characterization of Thiol Protease Inhibitor Isolated from Streptornyces sp. KISl3 (Streptomyces sp. KIS13 균주에서 분리한 thiol계 단백질분해효소 저해물질의 특성)

  • 김인섭;이계준
    • Microbiology and Biotechnology Letters
    • /
    • v.18 no.5
    • /
    • pp.501-505
    • /
    • 1990
  • Streptomyces sp. KISl3 isolated from soil was found to produce low molecular weight thiol protease inhibitors. The protease inhibitor production was closely linked to the cell growth and regulated by growth condition. The inhibitor was purified from the culture broth through butanol extraction, silicagel 60 column chromatography, Sephadex LH-20 gel filtration and preparative HPLC. The inhibitor showed specific inhibitory activity to thiol protease such as papain, picin and bromelain. The mode of inhibition against papain to Hammersten casein as a substrate was non-competitive.

  • PDF

Rapid Identification of Potato Scab Causing Streptomyces spp. from Soil Using Pathogenicity Specific Primers

  • Kim, Jeom-Soon;Lee, Young-Gyu;Ryu, Kyoung-Yul;Kim, Jong-Tae;Cheon, Jeong-Uk
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.134.2-135
    • /
    • 2003
  • The plant-pathogenic species S. scabies, S. acidiscabies, and S. turgidiscabies cause the scab disease of potato and produce the phytotoxins, thaxtomins. necl, a gene conferring a necrogenic phenotype, is involved in pathogenicity and physically linked to the thaxtomin A biosynthetic genes. Identification of the pathogenic strains of Streptomyces from soil was performed through the polymerase chain reaction by using specific pathogenicity primer sets derived from the necl gene sequences of Streptomyces smbies. The DNA was extracted from soil using a bead-beating machine and modifications of the FastPrep system. The DNA was suitable for direct use in the PCR. The PCR products showed the bands of approximately 460 bp. This methods can be very usuful in identifying species responsible for scab diseases and studying on the ecology of plant-pathogenic Streptomyces spp.

  • PDF

Proteomics-driven Identification of Putative AfsR2-target Proteins Stimulating Antibiotic Biosynthesis in Streptomyces lividans

  • Kim Chang-Young;Park Hyun-Joo;Kim Eung-Soo
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.10 no.3
    • /
    • pp.248-253
    • /
    • 2005
  • AfsR2, originally identified from Streptomyces lividans, is a global regulatory protein which stimulates antibiotic biosynthesis. Through its stable chromosomal integration, the high level of gene expression of afsR2 significantly induced antibiotic production as well as the sporulation of S. lividans, implying the presence of yet-uncharacterized AfsR2-target proteins. To identify and evaluate the putative AfsR2-target proteins involved in antibiotic regulation, the proteomics-driven approach was applied to the wild-type S. lividans and the afsR2-integrated actinorhodin overproducing strain. The 20 gel-electrophoresis gave approximately 340 protein spots showing different protein expression patterns between these two S. lividans strains. Further MALDI-TOF analysis revealed several AfsR2-target proteins, including glyceraldehyde-3-phosphate dehydrogenase, putative phosphate transport system regulator, guanosine penta phosphate synthetase/polyribonucleotide nucleotidyltransferase, and superoxide dismutase, which suggests that the AfsR2 should be a pleiotropic regulatory protein which controls differential expressions of various kinds of genes in Streptomyces species.

Concanamycin B, Active substance Against Phytophthora capsici Produced by Streptomyces neyagawaensis 38D10 Strain (Streptomyces neyagawaensis 38D10 균주가 생산하는 concanamycin B의 항고추역병 활성)

  • Kim, Chang-Jin;Lee, In-Kyoung;Yun, Bong-Sik;Yoo, Ick-Dong
    • Microbiology and Biotechnology Letters
    • /
    • v.21 no.4
    • /
    • pp.322-328
    • /
    • 1993
  • During the screening of antifungal compounds from microbial secondary metabolites to control phytophthora blight of red pepper caused by Phytophthora capsici, a soil isolate, strain 38D10 was selected. Based on taxonomic studies, this strain was identified as Streptomyces neyagawaensis. The antifungal compound was purified from culture broth by HP-20 column chromatography, ethyl acetate extraction, silica gel column chromatography, HPLC and identified as concanamycin B by UV. $^1H$-NMR, $^{13}C$-NMR, SIMS analysis. Concanamycin B has strong antifungal activity against some phytopathogenic fungi but not antivacterial activity and preventive value were 50% and 100% at 125ppm and 250ppm in pot assay.

  • PDF

Characteristics of protease inhibitor produced by streptomyces fradiae SMF9

  • Kim, Hyoung-Tae;Suh, Joo-Won;Lee, Key-Joon
    • Journal of Microbiology
    • /
    • v.33 no.2
    • /
    • pp.103-108
    • /
    • 1995
  • Streptomyces fradiae protease inhibitor (SFI) was purified effectively by preparative isoelectric focusing and hydroxyapatite chromatography. The molecular weight of SFI was estimated to be 1.7 kDa by SDS-PAGE and 1.8 kDa by molecular sieving HPLC. One hundred and sixty amino acid residues were determined from which molecular weight of SFI was calculated to be 17.054 Da and carbohydrate residue was not detected. SFI was calculated to be 17,064 Da and carbohydrate residue was not detected. SFI was a monomeric protein with two reactive sits, of which isoelectric point was pH 4.1. N-terminal amino acid sequence of SFI had homology with SSI (Streptomyces subsilisin inhibitor) and other protease inhibitors produced by Streptomyces.

  • PDF

The Glucose Repression of Aerial Mycelium Formation in Streptomyces (Streptomyces의 Aerial Mycelium 형성에 대한 Glucose 억제 기작에 관한 연구)

  • 김재헌;김웅진;강현삼;하영칠;홍순우
    • Korean Journal of Microbiology
    • /
    • v.18 no.3
    • /
    • pp.115-122
    • /
    • 1980
  • We have demonstrated that both L-histidine as an amino acid factor and dextrin as a carbon source were required for the glucose repression. 1% glucose was sufficient to the glucose repression of aerial mycelium formation in Streptomyces lavendulae and Streptomyces aureofacience. the synthesized medium, KK, which is lack of all orgnic nutrients except dextrin was able to induce glucose repression, but the addition of 0.003% or more L-histidiner recovers the capacity of glucose repression. 0.02% or more histidine was reuqired for glucose repression of aerial mycelium formation in the absence of dextrin. Treatments of $5{\mu}M$ ormore ethidium bromide (EtBr0 gave rise to bald mutants at high frequency in Streptomyces aureofaciens, and it is probable that the gene(s) for the function of aerial mycelium formation is linked to plasmed DNA in this species.

  • PDF

Characters of proteinase inhibitor isolated from streptomyces fradiae (Streptomyces fradiae에서 분리한 단백질 분해효소저해물질의 특성)

  • 정영화;이병규;이계준
    • Korean Journal of Microbiology
    • /
    • v.28 no.1
    • /
    • pp.65-70
    • /
    • 1990
  • The objective of the current study is to elucidate the biological roles of proteinase inhibitor in microorganisms. As the first step, a strain of Streptomyces fradiae was selected as a producer of extracellular proteinase inhibitor. The proteinase inhibitor was purified from culture broth through ultrafiltration, gel-filtration and ion-exchange chromatography. Molecular weight of the proteinase inhibitor was estimated to be 16, 800 by SDS polyacrylamide gel electrophoresis. It was found that the proteinase inhibitor inhibited only alkaline serine proteinases such as subtilisin, $\alpha$-chymotrypsin and Promase E but not trypsin and other proteinases. The mode of inhibition against Pronase E with succinyl-phenylalanine-p-nitroanilide as a substrate was competitive.

  • PDF