• 제목/요약/키워드: streptomyces

검색결과 1,268건 처리시간 0.02초

Isolation and Analysis of the argG Gene Encoding Argininosuccinate Synthetase from Corynebacterium glutamicum

  • Ko, Soon-Young;Kim, Sei-Hyun;Lee, Heung-Shick;Lee, Myeong-Sok
    • Journal of Microbiology and Biotechnology
    • /
    • 제13권6호
    • /
    • pp.949-954
    • /
    • 2003
  • The argG gene of Corynebacterium glutamicum encoding argininosuccinate synthetase (EC6345) was cloned and sequenced. The gene was cloned by heterologous complementation of an Escherichia coli arginine auxotrophic mutant (argG/sup -/). The cloned DNA fragment also complements E. coli argD, argF, and argH mutants, suggesting a clustered organization of the genes in the chromosome. The coding region of the argG gene is 1,206 nucleotides long with a deduced molecular weight of about 44 kDa, comparable with the predicted size of the expressed protein on the SDS-PAGE. Computer analysis revealed that the amino acid sequence of the argG gene product had a high similarity to that of Mycobacterium tuberculosis and Streptomyces clavuligerus. Two conserved sequence motifs within the ArgG appear to be ATP-binding sites which correspond to 2 of the 3 conserved regions found in sequences of all known argininosuccinate synthetases.

Cloning, Sequencing and Characterization of Acyltransferase Gene Involved in Exopolysaccharide Biosynthesis of Zoogloea ramigera 115SLR

  • Lee Sam-Pin;Troyano Esperanza;Lee Jin-Ho;Kim Hyun-Soo;Sinskey Anthony John
    • Journal of Microbiology and Biotechnology
    • /
    • 제16권7호
    • /
    • pp.1163-1168
    • /
    • 2006
  • The recombinant plasmid pLEX2FP complements the mutation in Zoogloea ramigera 115MM1, and the complemented mutant produces an exopolysaccharide that shows higher affinity for the calcofluor dye than the exopolysaccharide from Z. ramigera 115SLR, resulting in higher fluorescence intensity under UV light. A compositional and structural analysis of the exopolysaccharide from Z. ramigera 115MM1 showed that the different fluorescent properties were due to a lower content of acetyl groups when compared with Z. ramigera 115SLR exopolysaccharide. These results were in agreement with a sequence analysis of the gene carried in the plasmid pLEX2FP, which appeared to encode an O-acyltransferase highly homologous to the 3-O-acyltransferase of Streptomyces mycarofaciens. The gene encoding the acyltransferase from Z. ramigera 115SLR was expressed as a GST-fusion protein with 70,000 daltons in E. coli.

Species-Specific Cleavage by RNase E-Like Enzymes in 5S rRNA Maturation

  • RYOU SANG-MI;KIM JONG-MYUNG;YEOM JI-HYUN;KIM HYUN-LI;GO HA-YOUNG;SHIN EUN-KYOUNG;LEE KANGSEOK
    • Journal of Microbiology and Biotechnology
    • /
    • 제15권5호
    • /
    • pp.1100-1105
    • /
    • 2005
  • Previous work has identified a Streptomyces coelicolor gene, rns, encoding a 140 kDa protein (RNase ES) that exhibits the endoribonucleolytic cleavage specificity characteristic of RNase E and confers viability on and allows the propagation of E. coli cells lacking RNase E. Here, we identify a putative S. coelicolor 9S rRNA sequence and sites cleaved by RNase ES. The cleavage of the S. coelicolor 9S rRNA transcript by RNase ES resulted in a 5S rRNA precursor (p5S) that had four and two additional nucleotides at the 5' end and 3' ends of the mature 5S rRNA, respectively. However, despite the similarities between RNase E and RNase ES, these enzymes could accurately process 9S rRNA from just their own bacteria, indicating that these ancient enzymes and the rRNA segments that they attack appear to have co-evolved.

복수세포의 Succinate Dehydrogenase 조해물질의 검색 (Isolation of Inhibitor against Mouse Carcinoma Cells from Streptomyces sp.)

  • 송방호
    • 한국미생물·생명공학회지
    • /
    • 제7권2호
    • /
    • pp.97-102
    • /
    • 1979
  • 토양원으로 부터 분리된 Actinomycetes 120여주를 대상으로 S.D.I에 의해 마우스의 복수암인 Ehrlich ascith carcinoma 및 Sarcoma 180 세포의 succinate dehydrogonase 활성을 조해하는 물질을 강하게 생성하는 균 1주(As-568)를 선별하였으며 이 활성물질은 정상조직인 간, 신장, 뇌등에는 아주 강한 inhibition index를 나타내었으나 (20% 이하) 암조직에서는 50% 정도의 선택적 조해작용을 나타내었다. glucose-asparagine 배지에서 4∼S일간 배양하였을 때 가장 높은 역가의 활성물질을 생성하였으며 본 물질은 중성영역의 pH 및 열에 대해서는 비교적 안정한 고분자의 비투석성 물질로 추정된다.

  • PDF

Trichoderma harzianum이 생산하는 melanin 생성 저해물질 MR304-1 (MR304-1, A Melanin Synthesis Inhibitor Produced by Trichoderma harzianum)

  • 이충환;정명철;이호재;이계호;고영희
    • 한국미생물·생명공학회지
    • /
    • 제23권6호
    • /
    • pp.641-646
    • /
    • 1995
  • During the screening of inhibitors of melanin biosynthesis from microbial secondary metabolites, a fungal strain MR304 which was capable of producing high level of an inhibitor was selected. Based on taxonomic studies, this fungus could be classified as Trichoderma harzianum. The active compound (MR304-1) was purified from culture broth by Diaion HP-20 column chromatography, ethylacetate extraction, Sephadex LH-20 column chromatographv and HPLC. The inhibitor was identified as 3-(1,5-dihvdroxy-3-isocyanocyclopent-(E)-3-envl)prop-2-enoate by spectroscopic methods of UV, ESIMS, $^{1}$H-NMR, $^{13}$C-NMR, NOE, HMQC and HMBC. MR304-1 showed strong mushroom tyrosinase inhibitory activity with IC$_{50}$ value of 0.25 $\mu $g/ml. It inhibited melanin biosynthesis with 15 mm inhibition zone at 30 $\mu $g/paper disc in Streptomyces bikiniensis, a bacterium used as an indicator organism in this work. It also inhibited melanin biosynthesis in B16 melanoma cells with a niinimum inhibitory concentration of 0.05 $\mu $g/ml.

  • PDF

Biosynthesis of Bile Acids in a Variety of Marine Bacterial Taxa

  • Kim, Doc-Kyu;Lee, Jong-Suk;Kim, Ji-Young;Kang, So-Jung;Yoon, Jung-Hoon;Kim, Won-Gon;Lee, Choong-Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • 제17권3호
    • /
    • pp.403-407
    • /
    • 2007
  • Several marine. bacterial strains, which were isolated from seawater off the island Dokdo, Korea, were screened to find new bioactive compounds such as antibiotics. Among them, Donghaeana dokdonensis strain DSW-6 was found to produce antibacterial agents, and the agents were then purified and analyzed by LC-MS/MS and 1D- and 2D-NMR spectrometries. The bioactive compounds were successfully identified as cholic acid and glycine-conjugated glycocholic acid, the $7{\alpha}$-dehydroxylated derivatives (deoxycholic acid and glycodeoxycholic acid) of which were also detected in relatively small amounts. Other marine isolates, taxonomically different from DSW-6, were also able to produce the compounds in a quite different production ratio from DSW-6. As far as we are aware of, these bile acids are produced by specific members of the genus Streptomyces and Myroides, and thought to be general secondary metabolites produced by a variety of bacterial taxa that are widely distributed in the sea.

Identification of Novel Non-Metal Haloperoxidases from the Marine Metagenome

  • Gwon, Hui-Jeong;Teruhiko, Ide;Shigeaki, Harayama;Baik, Sang-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • 제24권6호
    • /
    • pp.835-842
    • /
    • 2014
  • Haloperoxidase (HPO, E.C.1.11.1.7) is a metal-containing enzyme oxidizing halonium species, which can be used in the synthesis of halogenated organic compounds, for instance in the production of antimicrobial agents, cosmetics, etc., in the presence of halides and $H_2O_2$. To isolate and evaluate a novel non-metal HPO using a culture-independent method, a cassette PCR library was constructed from marine seawater in Japan. We first isolated a novel HPO gene from Pseudomonas putida ATCC11172 by PCR for constructing the chimeric HPO library (HPO11172). HPO11172 showed each single open-reading frame of 828 base pairs coding for 276 amino acids, respectively, and showed 87% similarity with P. putida IF-3 sequences. Approximately 600 transformants screened for chimeric genes between P. putida ATCC11173 and HPO central fragments were able to identify 113 active clones. Among them, we finally isolated 20 novel HPO genes. Sequence analyses of the obtained 20 clones showed higher homology genes with P. putida or Sinorhizobium or Streptomyces strains. Although the HPO A9 clone showed the lowest homology with HPO11172, clones in group B, including CS19, showed a relatively higher homology of 80%, with 70% identy. E. coli cells expressing these HPO chimeric genes were able to successfully bioconvert chlorodimedone with KBr or KCl as substrate.

Heterologous Expression of Recombinant Transglutaminase in Bacillus subtilis SCK6 with Optimized Signal Peptide and Codon, and Its Impact on Gelatin Properties

  • Wang, Shiting;Yang, Zhigang;Li, Zhenjiang;Tian, Yongqiang
    • Journal of Microbiology and Biotechnology
    • /
    • 제30권7호
    • /
    • pp.1082-1091
    • /
    • 2020
  • Microbial transglutaminases (MTGs) are widely used in the food industry. In this study, the MTG gene of Streptomyces sp. TYQ1024 was cloned and expressed in a food-grade bacterial strain, Bacillus subtilis SCK6. Extracellular activity of the MTG after codon and signal peptide (SP Ync M) optimization was 20 times that of the pre-optimized enzyme. After purification, the molecular weight of the MTG was 38 kDa and the specific activity was 63.75 U/mg. The optimal temperature and pH for the recombinant MTG activity were 50℃ and 8.0, respectively. MTG activity increased 1.42-fold in the presence of β-ME and 1.6-fold in the presence of DTT. Moreover, 18% sodium chloride still resulted in 83% enzyme activity, which showed good salt tolerance. Cross-linking gelatin with the MTG increased the strength of gelatin 1.67 times and increased the thermal denaturation temperature from 61.8 to 75.8℃. The MTG also significantly increased the strength and thermal stability of gelatin. These characteristics demonstrated the huge commercial potential of MTG, such as for applications in salted protein foods.

Rapid and Efficient Isolation of Genes for Biosynthesis of Peptide Antibiotics from Gram-positive Bacterial Strains

  • Lee, Soon-Youl;Rhee, Sang-Ki;Kim, Chul-Ho;Suh, Joo-Won
    • Journal of Microbiology and Biotechnology
    • /
    • 제8권4호
    • /
    • pp.310-317
    • /
    • 1998
  • Peptide synthetases are large multifunctional enzyme complexes that catalyze the nonribosomal synthesis of a structurally diverse family of peptide antibiotics. These enzymes are composed of functionally independent domains with independent enzymatic activities. Their specific linkage order of domains forms the protein template that defines the sequence of the incorporated amino acids. Within each domain, several motifs of highly conserved sequences have been identified from the sequence alignment of the various peptide synthetases [30]. Taking advantage of the conserved nucleotide sequence of Core 1 and Core 2, we designed PCR primers to amplify the peptide synthetase genes from three different gram-positive bacterial strains. Nucleotide sequence analysis of the amplified PCR products from those three strains showed significant homology to various peptide synthetase genes, suggesting that the PCR products are parts of peptide synthetase genes. Therefore, this rapid and efficient PCR technique can be used for the isolation of peptide synthetase genes from various strains.

  • PDF

Site-Directed Mutagenesis on Putative Macrolactone Ring Size Determinant in the Hybrid Pikromycin-Tylosin Polyketide Synthase

  • Jung, Won-Seok;Kim, Eung-Soo;Kang, Han-Young;Choi, Cha-Yong;Sherman, David-H.;Yoon, Yeo-Joon
    • Journal of Microbiology and Biotechnology
    • /
    • 제13권5호
    • /
    • pp.823-827
    • /
    • 2003
  • Streptomyces venezuelae ATCC 15439 is notable in its ability to produce two distinct groups of macrolactones. It has been reported that the generation of two macrolactone structures results from alternative expression of pikromycin (Pik) polyketide synthase (PKS). It was previously reported that the hybrid pikromycin-tylosin PKS can also produce two different macrolactones but its mechanistic basis remains unclear. In order to address this question, a series of site-directed mutagenesis of tentative alternative ribosome binding site and translation start codons in tylGV were performed. The results suggest that macrolactone ring size is not determined by the alternative expression of TylGV but through other mechanism(s) involving direct interaction between the PikAIII and TE domain or skipping of the final chain elongation step. This provides new insight into the mechanism of macrolactone ring size determination in hybrid PKS as well as an opportunity to develop novel termination activities for combinatorial biosynthesis.