• 제목/요약/키워드: streptomyces

검색결과 1,274건 처리시간 0.029초

Heavy Metal Biosorption and its Significance to Metal Tolerance if Streptomycetes

  • Park, Jae-young;Kim, Jae-heon
    • Journal of Microbiology
    • /
    • 제40권1호
    • /
    • pp.51-54
    • /
    • 2002
  • Heavy metal adsorptions of four streptomycetes were compared with each other, Among the test strains, Streptomyces viridochromogenes showed the most efficient metal binding activity, which was carried out by cell wall as well as freeze-dried mycelium. An order of adsorption potential (zinc > copper > lead > cadmium) was observed in single metal reactions, whereas this adsorption order was disturbed in mixed-metal reactions. The metal adsorption reactions were very fast, pH dependent and culture age-independen, suggestive of a physico-chemical reaction between cell wall components and heavy metal ions. The metal tolerant stains presented the weakest adsorbing activity, indicating that the metal biosorption was not the basis of the metal tolerance.

농작물 해충 및 진균류 방제를 위한 방선균의 분리 및 동정 (Isolation and identification of Actinomycetes for the Control of Agricultual Pests and Fungal Pathogene)

  • 이은정;강경돈
    • 한국잠사곤충학회지
    • /
    • 제40권1호
    • /
    • pp.63-69
    • /
    • 1998
  • Twenty seven out of ca. 5,000 actinomycete strains, which were isolated from soil collected throughout the country, showed antibicrobial effects against fungai, Rhizopus stronifer (ATCC 6227a), Rhizoctonia solani (KCCM 11271) and yeast, Candida albicans (ATCC 10231). From these antifungal microorganisms, we further selected seven strains which seemed to produce insecticidal substances with in vivo test, using silkworm, Bombyx mori and beet armyworm, Spodoptera exigua. Morphological and biochemical experiments revealed that three strains out of seven were Streptomyces. Further investigations on the physical and chemical properties of these antifungal and insecticidal substances are now in progress.

  • PDF

형질전환에 의한 S. cattleya의 카바페넴 항생제 생산성 향상 (Improvement of Carbapenem Antibiotics Productivity in S. cattleya by Transformation)

  • 박지선;이강만
    • 약학회지
    • /
    • 제40권2호
    • /
    • pp.212-217
    • /
    • 1996
  • Streptomyces cattleya is a producer of carbapenem antibiotics, thienamycin and N-acetylthienamycin, which have potent and broad-spectrum antibacterial activities. We stud ied on strain improvement for antibiotic productivity of S. cattleya by transformation technique which employed S.cattleya protoplasts and chromosomal DNAs of glutamic acid producers: Corynebacterium glutamicum and Arthrobacter simplex. 150 Transformant strains were cultured and bioassayed using Bacillus subtilis and Staphylococcus aureus as test organisms. 8.7% of transformants tested showed 1.4~2.6 fold higher productivities than wild type which produced $1.61{\pm}0.67{\mu}g/ml$. The best transformant produced $8.36{\pm}2.84{\mu}g/ml$ carbapenems.

  • PDF

Virulence Attenuation of Pectobacterium carotovorum Using N-Acyl-homoserine Lactone Degrading Bacteria Isolated from Potato Rhizosphere

  • Mahmoudi, Esmaeil;Tabatabaei, Badraldin Ebrahim Sayed;Venturi, Vittorio
    • The Plant Pathology Journal
    • /
    • 제27권3호
    • /
    • pp.242-248
    • /
    • 2011
  • Several soil bacteria were found to degrade N-Acylhomoserine lactones (NAHLs), thereby interfering with the bacterial quorum sensing system. In this research, fifteen strains of NAHL degrading rhizobacteria were isolated from potato rhizosphere. Based on phenotypic characteristics and 16S rDNA sequence analyses, the strains were identified as members of genera Bacillus, Streptomyces, Arthrobacter, Pseudomonas and Mesorhizobium. All tested isolates were capable to degrade both synthetic and natural NAHL produced by Pectobacterium carotovorum subsp. carotovorum (Pcc) strain EMPCC. In quorum quenching experiments selected isolates, especially Mesorhizobium sp., were markedly reduced the pathogenicity of Pcc strain EMPCC in potato tubers and totally suppressed tissue maceration on potato tubers. These led to consider the latter as a useful biocontrol agent against Pectobacterium spp.

In Vitro Activity of Cyclic Dipeptides Against Gram-Positive and Gram-Negative Anaerobic Bacteria and Radioprotective Effect on Lung Cells

  • RHEE KI-HYEONG
    • Journal of Microbiology and Biotechnology
    • /
    • 제16권1호
    • /
    • pp.158-162
    • /
    • 2006
  • Cyclic dipeptides isolated from Streptomyces sp. have been shown to have antimicrobial activity as well as other potentially useful biological activities. The purpose of this study was to compare the in vitro activity of two cyclic dipeptides combined against anaerobic bacteria with the activity of other antimicrobial agents. Specifically, the in vitro activity of the combination of two cyclic dipeptides was investigated against 140 clinical isolates of anaerobic bacteria by the agar dilution method and was compared with that of erythromycin, cefoxitin, imipenem, clindamycin, and metronidazole. The cyclic dipeptide combination and imipenem were the most active antimicrobial agents tested. In addition, the cyclic dipeptide combination had a radioprotective effect on five normal human lung fibroblast cells, showing survival rates higher $(>90\%)$ than either of the two cyclic dipeptides alone $(<80\%)$.

Plant Growth Regulator Produced by Streptomyces sp. (Part II) Conditions of Production and Some Properties of the Plant Growth Regulator

  • 김광현;서정훈
    • 한국미생물생명공학회:학술대회논문집
    • /
    • 한국미생물생명공학회 1978년도 추계학술대회
    • /
    • pp.207.5-208
    • /
    • 1978
  • Effects of the plant growth regulator (P. G. R.)on the reaction of proteinase, $\gamma-amylase$ and acid phosphatase were investigated, and also were the conditions of production of P. G. R. by Stroptomyces sp. 445. The P. G. R. had no effect on the act ivities of such enzymes in mung bean seedling. But in germinating seed previously treated with P. G. R. it effected the activity of protease in cotyledon. In the conditions of production of P. G. R., the maxim, activity was appeared in shaking cutlure at $30^{\circ}C$ for 5 days, and by the addition of peptone or casein hydrolysate as nitrogen source, soluble starch as carbon source, and sulfur as metal ion.

  • PDF

Tyrosinase Inhibitor from the Flowers of Impatiens balsamina

  • Lim, Young-Hee;Kim, In-Hwan;Seo, Jung-Ju;Kim, Jeong-Keun
    • Journal of Microbiology and Biotechnology
    • /
    • 제16권12호
    • /
    • pp.1977-1983
    • /
    • 2006
  • Kaempferol was isolated and identified from the methanol extract of the flowers of Impatiens balsamina. Kaempferol showed inhibitory activity against mushroom tyrosinase with an $ID_{50}$ of 0.042 mM. Inhibition kinetics, as determined using a Lineweaver-Burk plot, showed kaempferol to be a competitive inhibitor of mushroom tyrosinase with a $K_i$ value of 0.011 mM. The lag phase of tyrosine hydroxylation catalyzed by mushroom tyrosinase clearly increased on increasing the concentration of kaempferol. In addition to its tyrosinase inhibiting activity, kaempferol strongly inhibited melanin production by Streptomyces bikiniensis, in a dose-dependent manner, without inhibiting cell growth. For comparative purposes, the tyrosinase inhibitory activity of kaempferol was also assayed versus quercetin, a positive standard.

Actinomycin계열 항생물질 MT-497 을 생산하는 방선균 분리주 No.497의 동정 (Identification of the Actinomycetes Strain No. 497, Isolated from Soil, Producing Actinomycin Antibiotic MT-497)

  • 안종석;이영선;안순철;이정형;이지행;윤병대;민태익
    • 한국미생물·생명공학회지
    • /
    • 제19권6호
    • /
    • pp.561-567
    • /
    • 1991
  • Identification of the Actinomycetes isolate strain No. 497 producing an actinomycin antibiotic MT-497 was performed by ISP and chemotaxonomic methods. The strain Nu. 497 formed various shapes of sclerotia and smooth surface spore. Menaquinone MK-9 ($H_6, H_8$) and iso-, anteiso-branched $C_{15}C_{17}$ fatty acids were detected from whole cell extract. The wall chemotype of stram No. 497 was decided as wall chemotype I from the analysis of DAP isomer, peptidoglycan type and sugar pattern. From these morphological, chemotaxonomic characteristics and analysis of various physiological characteristics. the strain No. 497 was identified as Streptomyces nigrifaciens.

  • PDF

Functional Implications of the Conserved Action of Regulators of Ribonuclease Activity

  • Yeom, Ji-Hyun;Shin, Eun-Kyoung;Go, Ha-Young;Sim, Se-Hoon;Seong, Maeng-Je;Lee, Kang-Seok
    • Journal of Microbiology and Biotechnology
    • /
    • 제18권8호
    • /
    • pp.1353-1356
    • /
    • 2008
  • RNase E (Rne) plays a major role in the decay and processing of numerous RNAs in E. coli, and protein inhibitors of RNase E, RraA and RraB, have recently been discovered. Here, we report that coexpression of RraA or RraB reduces the ribonucleolytic activity in rne-deleted E. coli cells overproducing RNase ES, a Streptomyces coelicolor functional ortholog of RNase E, and consequently rescues these cells from growth arrest. These findings suggest that the regulators of ribonuclease activity have a conserved intrinsic property that effectively acts on an RNase E-like enzyme found in a distantly related bacterial species.

A Review on Structure, Modifications and Structure-Activity Relation of Quercetin and Its Derivatives

  • Magar, Rubin Thapa;Sohng, Jae Kyung
    • Journal of Microbiology and Biotechnology
    • /
    • 제30권1호
    • /
    • pp.11-20
    • /
    • 2020
  • Quercetin and its derivatives are important metabolites that belong to the flavonol class of flavonoids. Quercetin and some of the conjugates have been approved by the FDA for human use. They are widely distributed among plants and have various biological activities, such as being anticancer, antiviral, and antioxidant. Hence, the biosynthesis of novel derivatives is an important field of research. Glycosylation and methylation are two important modification strategies that have long been used and have resulted in many novel metabolites that are not present in natural sources. A strategy for modifying quercetin in E. coli by means of glycosylation, for example, involves overexpressing respective glycosyltransferases (GTs) in the host and metabolic engineering for increasing nucleoside diphosphate sugar (NDP-sugar). Still others have used microorganisms other than E. coli, such as Streptomyces sp., for the biotransformation process. The overall study of the structural activity relationship has revealed that modification of some residues in quercetin decreased one activity but increased others. This review summarizes all of the information mentioned above.