• Title/Summary/Keyword: strengths-based

Search Result 1,187, Processing Time 0.027 seconds

Development of Model Equations for Strength Properties with Age in Concrete Pavement (재령에 따른 포장용 콘크리트의 강도특성 예측식 개발)

  • Yang, Sung-Chul;Kwon, Su-Ahn;Lim, Yu-Jin
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.6
    • /
    • pp.35-43
    • /
    • 2010
  • This study was carried out to find reliable relations between various concrete strength properties which are used as input data in concrete pavement design program. Concretes were made from different sources of coarse grained(granite, limestone and sandstone) and fine grained aggregates such as natural sand, washed sand and crushed sand. From strength test results, model equations were obtained based on the relation between strengths. For each coarse grained aggregate, models for compression-flexural strengths, compression-split tensile strengths, compressive strength-modulus and flexural-split tensile strengths with age were obtained. For concrete mixed with gneiss granite aggregates, concrete strengths were obtained from numerical mean values of concrete strengths mixed with fine grained aggregates. In addition models for concrete split tensile strengths and modulus values were provide by averaging numerically the estimated values obtained from the derived relationship and the experimental values. This is due to more scattered values of split tensile strengths and modulus values than other strength properties. Finally criteria for drying shrinkage strain as well as Poisson's ratio for concrete used in pavement were presented for all mixes with differed coarse grained aggregates.

Evaluation of CPTU Cone Factor of Silty Soil with Low Plasticity Focusing on Undrained Shear Strength Characteristics (저소성 실트지반의 비배수 전단강도 특성을 고려한 CPTU 콘계수 평가)

  • Kim, Ju-Hyun
    • Journal of the Korean Geosynthetics Society
    • /
    • v.16 no.1
    • /
    • pp.73-83
    • /
    • 2017
  • Laboratory and in-situ tests were conducted to evaluate the cone factors for the layers with low plasticity containing a lot of silty and sand soils from the west coast (Incheon, Hwaseong and Gunsan areas) and its applicability was evaluated based on these results. The cone factors were evaluated from 19 to 23 based on unconfined compression strengths (qu), from 13 to 13.8 based on simple CU strengths and from 11.6 to 13.1 based on field vane strengths, respectively. The unconfined compression strengths of undisturbed silty soil samples with low plasticity were considerably underestimated due to the change of in-situ residual effective stress during sampling. Half of unconfined compression strength (qu/2) based cone factors of silty soils with low plasticity fluctuated and were approximately 1.8 times higher than simple CU based values of these soils. When evaluating cone factors of these soils, it should be judged overall on the physical properties such as the grain size distribution and soil plasticity and on the fluctuation of the corrected cone resistance and the sleeve friction due to the distribution of sandseam in the ground including pore pressure parameter.

Pull-out Strengths of GFRP-Concrete Bond Exposed to Applied Environmental Conditions

  • Kabir, Muhammad Ikramul;Samali, Bijan;Shrestha, Rijun
    • International Journal of Concrete Structures and Materials
    • /
    • v.11 no.1
    • /
    • pp.69-84
    • /
    • 2017
  • This paper presents results of an experimental investigation on the behaviour of bond between external glass fibre reinforced polymer reinforcement and concrete exposed to three different environmental conditions, namely, temperature cycles, wet-dry cycles and outdoor environment separately for extended durations. Single shear tests (pull-out test) were conducted to investigate bond strengths (pull-out strengths) of control (unexposed) and exposed specimens. Effect of the exposure conditions on the compressive strength of concrete were also investigated separately to understand the effect of changing concrete compressive strength on the pull-out strength. Based on the comparison of experimental results of exposed specimens to control specimens in terms of bond strengths, failure modes and strain profiles, the most significant degradation of pull-out strength was observed in specimens exposed to outdoor environment, whereas temperature cycles did not cause any deterioration of strength.

Development of the inorganic which uses the Fly-ash and Meta-kaolin (플라이애쉬와 메타카올린을 사용한 무기결합재의 개발)

  • Jung, Suk-Jo;Chu, Yong-Sik;Lee, Jong-Kyu
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.433-436
    • /
    • 2005
  • The Fly-ash makes an Alumino-silicate gel when it mixes an alkali or a silicate solution. This Alumino-silicate gel is produced to the activation of an alkali silicate. And this act to the binder and makes a combine of particles. This study involved mechanical strengths of an Alumino-silicate Gel based the Fly-ash with an alkali solution. NaOH, KOH were utilized to an alkali solution. The alkali solution concentration was varied from 6 to 12M and the some added also the Meta-kaolin, Waterglass so that it made high the mechanical performance. Based on the experimental result, the compressive strengths increased as the quantity of the Meta-kaolin increased. And a mechanical strengths appeared according to the concentration of an alkali solution so that it was different. XRD, FT-IR have been used to characterize mechanical performance.

  • PDF

Simplified approach to estimate the lateral torsional buckling of GFRP channel beams

  • Kasiviswanathan, M.;Anbarasu, M.
    • Structural Engineering and Mechanics
    • /
    • v.77 no.4
    • /
    • pp.523-533
    • /
    • 2021
  • The present study investigates the lateral torsional buckling behaviour of pultruded glass fiber reinforced polymer (GFRP) simply supported channel beams subjected to uniform bending about their major axis. A parametric study by varying the sectional geometry and span of channel beams is carried out by using ABAQUS software. The accuracy of the FE models was ensured by verifying them against the available results provided in the literature. The effect of geometric nonlinearity, geometric imperfections, and the dependency of finite element mesh on the lateral torsional buckling were carefully considered in the FE model. Lateral torsional buckling (LTB) strengths obtained from the numerical study were compared with the theoretical LTB strengths obtained based on the Eurocode 3 approach for steel sections. The comparison between the numerical strengths and the design procedure proposed in the literature based on Eurocode 3 approach revealed disagreements. Therefore, a simplified improved design procedure is proposed for the safe design strength prediction of pultruded GFRP channel beams. The proposed equation has been provided that might aid the structural engineers in economically designing the pultruded GFRP channel beams in the future.

Investigations on the tensile strength of high-performance fiber reinforced concrete using statistical methods

  • Ramadoss, P.;Nagamani, K.
    • Computers and Concrete
    • /
    • v.3 no.6
    • /
    • pp.389-400
    • /
    • 2006
  • This paper presents the investigations towards developing a better understanding on the contribution of steel fibers on the tensile strength of high-performance fiber reinforced concrete (HPFRC). An extensive experimentation was carried out with w/cm ratios ranging from 0.25 to 0.40 and fiber content ranging from zero to 1.5 percent with an aspect ratio of 80. For 32 concrete mixes, flexural and splitting tensile strengths were determined at 28 days. The influence of fiber content in terms of fiber reinforcing index on the flexural and splitting tensile strengths of HPFRC is presented. Based on the test results, mathematical models were developed using statistical methods to predict 28-day flexural and splitting tensile strengths of HPFRC for a wide range of w/cm ratios. The expressions, being developed with strength ratios and not with absolute values of strengths and are applicable to wide range of w/cm ratio and different sizes/shapes of specimens. Relationship between flexural and splitting tensile strengths has been developed using regression analysis and absolute variation of strength values obtained was within 3.85 percent. To examine the validity of the proposed model, the experimental results of previous researchers were compared with the values predicted by the model.

Assessment of Ultimate Longitudinal Strength of a VLCC considering Kinematic Displacement Theory (기하학적 변위 이론을 적용한 VLCC 최종종강도 평가)

  • Choung, Joonmo;Nam, Ji-Myung;Tayyar, Gokhan Tansel;Yoon, Sung-Won;Lee, Kangsu
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.50 no.4
    • /
    • pp.255-261
    • /
    • 2013
  • This paper presents prediction of ultimate longitudinal strength of a VLCC, "Energy Concentration" for which many benchmark studies have been carried out, based on kinematic displacement method proposed by Tayyar and Bayraktarkatal (2012). Kinematic displacement theory provides semi-analytical solution of average compressive strengths for various kinds of stiffened panels. The accuracy of average compressive strengths obtained from formulas of CSR(common structural rules) for tankers and kinematic displacement method are discussed in the fore part of this paper. Hull girder ultimate strengths using Smith method are also compared for different average compressive strengths. By comparing them with other benchmark results, it is concluded that the new method provides lower bounds, because hull girder strengths under the sagging and hogging moment conditions approach nearly lower bounds.

A constant tendon moment arms finger model in the sagittal plane

  • Lee, K.H.
    • Proceedings of the ESK Conference
    • /
    • 1992.10a
    • /
    • pp.46-53
    • /
    • 1992
  • Finger movements in the sagittal plane mainly consist of flexion and extension about the metacarpophalangeal(MCP) and proximal interphalangeal(PIP) joints. A kinematic finger model was developed with the assumption of constant tendon moment arms. Equations of static equilibrium were derived for the finger model using the principle of virtual work. Equations of static equilibrium for the finger model were indeterminate since only three equations were available for five unknown variables(forces). The number of variables was reduced based on information on muscular activities in finger movements. Then the amounts of forces which muscles exerted to maintain static equilibrium against external loads were computed from the equilibrium equations. The muscular forces were expressed mathematically as functions of finger positions, tendon moment arms, lengths of phalanges, and the magnitude and direction of external load. The external finger strength were computed using the equations of muscular forces and anatomical data. Experiments were performed to measure finger strengths. Measurements were taken in combinations of four finger positions and four directions of force exertions. Validation of the finger models and of procedure to estimate finger strengths was done by comparing the results of computations and experiments. Significang differences were found between the predicted and measured finger strengths. However, the trends of finger strengths with respect to finger positions were similar inboth the predicted and measured. These findings indicate that the finger model and the procedure to predict finger strengths were correctly developed.

  • PDF

The Influence of Parents' Five Day Work Weeks and Family Leisure on Adolescents' Perceived Family Strengths (부모의 주 5일 근무 여부에 따른 가족여가활동 유형이 청소년의 가족건강성에 미치는 영향)

  • Kim, Min-Jung;Jang, Yoon-Ok
    • Journal of Families and Better Life
    • /
    • v.26 no.6
    • /
    • pp.1-20
    • /
    • 2008
  • This study investigates the influences of factors such as type and degree of family leisure among parents with five day work weeks on adolescents' perceived family strengths. Its findings are based on questionnaires collected from 525 male and female parents of middle school students. Factor analysis and MANOVA were employed for data analysis and $Scheff{\acute{e}}$ tests for post-hoc analysis. The main findings were as follows. First, adolescents whose parents work five days a week were at a higher level than other adolescents in terms of finances, family ties, communication, and social ties. Second, there were no significant differences concerning adolescents' family strength by type of family leisure. Third, adolescents with more family leisure activities scored higher than others in the areas of manageable strengths, financial levels, family ties, communication, and family social ties. Fourth, among families following the five day working system, adolescents who had more family leisure activities scored higher than the others in regards to manageable strengths, financial levels, family ties, communication, and family social ties. Additionally, where adolescents thought they had fewer family leisure activities, family-oriented adolescents tended to be engaged in higher physical-activity-oriented and hobby-oriented activities in relation to manageable strengths, financial level, family ties, and communication and hobby-oriented adolescents engaged in higher than average amounts of physical-activity, strengthening family social ties in the process. Fifth, concerning families not adhering to the five day working system, adolescents who had more family leisure activities scored higher than others in terms of manageable strengths, financial levels, family ties, communication, and family social ties. As the above results indicate, family leisure activities appear to be a key factor influencing family strength. Therefore, further support should be extended toward developing new forms of family leisure and additional studies should be devoted to the subject.

Average Compressive Strengths of Stiffened Plates for In-Service Vessels Under Lateral Pressure (횡압력을 받는 실선 보강판의 평균압축강도)

  • Choung, Joon-Mo;Jeon, Sang-Ik;Lee, Min-Seong;Nam, Ji-Myung;Ha, Tae-Bum
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.48 no.4
    • /
    • pp.330-335
    • /
    • 2011
  • This paper presents estimation of average compressive strengths of three types of stiffened panels under lateral pressure and axial compression based on simplified formulas from CSRs and nonlinear FEAs. FEA scenarios are prepared based on the slenderness ratios of the stiffened panels used for in-service vessels. The seven step lateral pressures by 1bar increment are imposed on FE models assuming maximum 30m water height. The number of FEAs for FB-, AB-, and TB-stiffened panels is totally 189 times. FEA results show that existence of pressure can evolves significant reduction of ultimate strengths, meanwhile CSR formulas do not take into account the lateral pressure effect. Lateral pressure acting on the stiffened panel with higher column slenderness ratio more reduces the ultimate strengths than those with smaller column slenderness ratio. A new concept of relative average compressive strain energy instead of the ultimate strength is introduced in order to rationally compare the average compressive strength through complete compressive straining regime. The differences of the ultimate strengths between CSR formulas and FEA results are relatively small for FB- and AB-stiffened panels, but larger discrepancies of relative average compressive strain energies are shown.