• Title/Summary/Keyword: strengths of materials

Search Result 941, Processing Time 0.024 seconds

Mechanical and Thermal Properties of Needle Punched Nonwoven Carbon/Phenol Composite (니들펀칭 부직포 탄소/페놀 복합재료의 역학적 성질 및 열적 성질에 관한 연구)

  • 정경호;강태진
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.11a
    • /
    • pp.50-53
    • /
    • 2000
  • The effect of punching density on the mechanical and thermal properties of nonwoven needle-punched carbon/phenol composite was studied. The carbonized preforms were farmed into composites with phenol resin. The interlaminar shear, tensile and flexural strengths were increased with increasing punching density. However, excessive punching density decreased interlaminar shear and tensile strengths. Erosion rate of carbon/phenol composite was decreased with increasing punching density

  • PDF

Shear bond strength between CAD/CAM denture base resin and denture artificial teeth when bonded with resin cement

  • Han, Sang Yeon;Moon, Yun-Hee;Lee, Jonghyuk
    • The Journal of Advanced Prosthodontics
    • /
    • v.12 no.5
    • /
    • pp.251-258
    • /
    • 2020
  • PURPOSE. The bond strengths between resin denture teeth with various compositions and denture base resins including conventional and CAD/CAM purposed materials were evaluated to find influence of each material. MATERIALS AND METHODS. Cylindrical rods (6.0 mm diameter × 8.0 mm length) prepared from pre-polymerized CAD/CAM denture base resin blocks (PMMA Block-pink; Huge Dental Material, Vipi Block-Pink; Vipi Industria) were bonded to the basal surface of resin teeth from three different companies (VITA MFT®; VITA Zahnfabrik, Endura Posterio®; SHOFU Dental, Duracross Physio®; Nissin Dental Products Inc.) using resin cement (Super-Bond C&B; SUN MEDICAL). As a control group, rods from a conventional heat-polymerizing denture base resin (Vertex™ Rapid Simplified; Vertex-Dental B.V. Co.) were attached to the resin teeth using the conventional flasking and curing method. Furthermore, the effect of air abrasion was studied with the highly cross-linked resin teeth (VITA MFT®) groups. The shear bond strengths were measured, and then the fractured surfaces were examined to analyze the mode of failure. RESULTS. The shear bond strengths of the conventional heat-polymerizing PMMA denture resin group and the CAD/CAM denture base resin groups were similar. Air abrasion to VITA MFT® did not improve shear bond strengths. Interfacial failure was the dominant cause of failure for all specimens. CONCLUSION. Shear bond strengths of CAD/CAM denture base materials and resin denture teeth using resin cement are comparable to those of conventional methods.

Dynamic Strength Variation of Glass Epoxy Composites with respect to Strain Rates (변형률 속도에 따른 유리섬유 에폭시 복합재료의 동적 강도 변화)

  • 임태성;이대길
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.05a
    • /
    • pp.83-88
    • /
    • 2001
  • In this study, the tensile and compressive tests of glass fiber epoxy composites were performed to measure the strength variation with respect to strain rates of 1-200 $\textrm{sec}^{-1}$. In addition, tensile and compressive tests of 50-200 $\textrm{sec}^{-1}$ strain rates were conducted at a low temperature ($-60^{\circ}C$) to investigate the effects of temperature on the strength variation. From the test results, it was found that the tensile and compressive strengths increased about 100% and 70%, respectively, at the strain rates of 10-100 $\textrm{sec}^{-1}$ compared to the quasi-static strengths while the strengths were little affected by the environmental temperature variation.

  • PDF

A STUDY ON THE BOND STRENGTH OF REPAIRED GLASS IONOMER CEMENTS (Repaired glass ionomer cement의 결합강도에 관한 연구)

  • Seo, Su-Jeong;Kim, Shin
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.23 no.2
    • /
    • pp.347-355
    • /
    • 1996
  • The purpose of this study was to compare the bond strengths of different kinds of glass ionomer cements (GIC), which is recently increasing the clinical application in the field of pediatric dentistry and measure the repaired bond strengths in order to examine the clinical applicabilty of partial repaired cases. By using one kind of the light cured type GIC and three kinds of the chemical cured type GIC, the bond strengths of the followings were compared : unrepaired group as control, repaired conditioning group, which was treated the repaired surface using 25% polyacrylic acid and repaired non-conditioning group without surface treatment. Three point bending test was performed under Universal Testing Machine in order to measure the compressive bond strengths. The results were as follows : 1. Light cured GIC had higher bond strength than chemical cured type GIC in both of repaired and unrepaired groups. 2. In repaired cases, all of the materials decreased the bond strength when compared to the control group. In the light cured type, the bond strength of repaired conditioning group decreased 31.6%, repaired non-conditioning group decreased 40.8%. In chemical cured types, the bond strength of repaired conditining group decreased 11.8%, repaired non-conditioning group decreased 20.9%. 3. All the materials, in the case of the chemical treatment on the repaired surface using 25% polyacrylic acid had higher bond strength than untreated but, lower than control group.

  • PDF

Mechanical properties of blended cements at elevated temperatures predicted using a fuzzy logic model

  • Beycioglu, Ahmet;Gultekin, Adil;Aruntas, Huseyin Yilmaz;Gencel, Osman;Dobiszewska, Magdalena;Brostow, Witold
    • Computers and Concrete
    • /
    • v.20 no.2
    • /
    • pp.247-255
    • /
    • 2017
  • This study aimed to develop a Rule Based Mamdani Type Fuzzy Logic (RBMFL) model to predict the flexural strengths and compressive strengths of blended cements under elevated temperatures. Clinoptilolite was used as cement substitution material in the experimental stage. Substitution ratios in the cement mortar mix designs were selected as 0% (reference), 5%, 10%, 15% and 20%. The data used in the modeling process were obtained experimentally, after mortar specimens having reached the age of 90 days and exposed to $300^{\circ}C$, $400^{\circ}C$, $500^{\circ}C$ temperatures for 3 hours. In the RBMFL model, temperature ($C^{\circ}$) and substitution ratio of clinoptilolite (%) were inputs while the compressive strengths and flexural strengths of mortars were outputs. Results were compared by using some statistical methods. Statistical comparison results showed that rule based Mamdani type fuzzy logic can be an alternative approach for the evaluation of the mechanical properties of concrete under elevated temperature.

Effect of Persimmon Juice Dyeing on Strength Properties of Jumchi-Hanjis Mixed with Korean and Thai Mulberry Fibers and Wood Pulp (국내산과 태국산 닥섬유 및 목재펄프가 혼합된 줌치한지의 감물염색에 따른 강도 특성)

  • Hong, Heesook;Kim, Gi-Eok;Koh, Jungnye
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.45 no.6
    • /
    • pp.1035-1051
    • /
    • 2021
  • This study compares the strength properties of Jumchi-Hanjis dyed with 70% and 100% persimmon juice concentrations and undyed Jumchi-Hanjis. The Juumchi-Hanjis were made from Dakjis (mulberry papers), which were mixed with different ratios of fibers from paper mulberries originating in Korea and Thailand, including wood pulp from Canada. Research results showed that tensile, wet tensile, and bursting strengths of Jumchi-Hanjis dyed with 70% concentration were higher than those of undyed Jumchi-Hanjis. However, the tearing strengths of the dyed Jumchi-Hanjis were lower than those of undyed Jumchi-Hanjis. The wet tensile strengths of Jumchi-Hanjis dyed with 100% concentration were higher than those of dyed with 70% concentration. The increase and decrease of tensile, tearing, and bursting strengths depending on persimmon juice dyeing differed as per the mixing ratio of the raw materials of Jumchi-Hanjis. Dyeing with 100% persimmon juice concentration tends to be more useful than 70% to increase the tensile (MD) and wet tensile strengths of Jumchi-Hanjis containing only Korean mulberry fibers (90%) and wood pulp (10%) as raw materials. Dyeing with 100% concentration tends to be less useful than 70% to increase the tensile, tearing and bursting strengths of Jumchi-Hanjis with high proportions (90% or 60%) of mulberry fibers from Thailand.

Application of the full factorial design to modelling of Al2O3/SiC particle reinforced al-matrix composites

  • Altinkok, Necat
    • Steel and Composite Structures
    • /
    • v.21 no.6
    • /
    • pp.1327-1345
    • /
    • 2016
  • $Al_2O_3$/SiC particulate reinforced (Metal Matrix Composites) MMCs which were produced by using stir casting process, bending strength and hardening behaviour were obtained using an analysis of variance (ANOVA) technique that uses full factorial design. Factor variables and their ranges were: particle size $2-60{\mu}m$; the stirring speed 450 rpm, 500 rpm and the stirring temperature $620^{\circ}C$, $650^{\circ}C$. An empirical equation was derived from test results to describe the relationship between the test parameters. This model for the tensile strength of the hybrid composite materials with $R^2$ adj = 80% for the bending strength $R^2$ adj = 89% were generated from the data. The regression coefficients of this model quantify the tensile strength and bending strengths of the effects of each of the factors. The interactions of all three factors do not present significant percentage contributions on the tensile strength and bending strengths of hybrid composite materials. Analysis of the residuals versus was predicted the tensile strength and bending strengths show a normalized distribution and thereby confirms the suitability of this model. Particle size was found to have the strongest influence on the tensile strength and bending strength.

Investigation of cold-formed stainless steel non-slender circular hollow section columns

  • Ellobody, Ehab;Young, Ben
    • Steel and Composite Structures
    • /
    • v.7 no.4
    • /
    • pp.321-337
    • /
    • 2007
  • The investigation on the behaviour of cold-formed stainless steel non-slender circular hollow section columns is presented in this paper. The normal strength austenitic stainless steel type 304 and the high strength duplex materials (austenitic-ferritic approximately equivalent to EN 1.4462 and UNS S31803) were considered in this study. The finite element method has been used to carry out the investigation. The columns were compressed between fixed ends at different column lengths. The geometric and material nonlinearities have been included in the finite element analysis. The column strengths and failure modes were predicted. An extensive parametric study was carried out to study the effects of normal and high strength materials on cold-formed stainless steel non-slender circular hollow section columns. The column strengths predicted from the finite element analysis were compared with the design strengths calculated using the American Specification, Australian/New Zealand Standard and European Code for cold-formed stainless steel structures. The numerical results showed that the design rules specified in the American, Australian/New Zealand and European specifications are generally unconservative for the cold-formed stainless steel non-slender circular hollow section columns of normal and high strength materials, except for the short columns and some of the high strength stainless steel columns. Therefore, different values of the imperfection factor and limiting slenderness in the European Code design rules were proposed for cold-formed stainless steel non-slender circular hollow section columns.

Mechanical Properties and Morphology of Polyamide/Polypropylene Blends

  • Kim, Su Young;Ha, Jin Uk;Shin, Donghyeok;Jung, Wooseok;Lee, Pyoung-Chan
    • Elastomers and Composites
    • /
    • v.55 no.1
    • /
    • pp.1-5
    • /
    • 2020
  • This study examined the effects of the addition of maleic anhydride-grafted polypropylene (PP-g-MA) and polyolefin elastomer (POE) on polyamide 66 (PA66) and polypropylene (PP) blends. The blends of PA66/PP with PP-g-MA and POE were prepared using a twin screw extruder. Mechanical testing results revealed that the tensile, flexural, and izod impact strengths of the blends were maximized at a PP-g-MA content of 2 phr. The increased mechanical strength of the blends with PP-g-MA was attributed to the compatibilizing effect of the PA66 and PP blends. In addition, as the POE content increased, the impact strength of the blends increased. However, at a high POE content, the tensile and flexural strengths decreased, seemingly because of the lower mechanical properties of POE.

Tribological and Mechanical Properties of UHMWPE/HDPE Composites

  • Na, Woo Seok;Lee, Kwang Ho;Kong, Tae Woong;Baek, Jung Youn;Oh, Jeong Seok
    • Elastomers and Composites
    • /
    • v.53 no.4
    • /
    • pp.234-238
    • /
    • 2018
  • The influence of reinforcing UHMWPE powder on the tribological and mechanical properties of HDPE was investigated. The circularizing of UHMWPE powder was improved by high-speed rotation to enhance particle distribution and flowability. HDPE composites reinforced with UHMWPE powder in the range of 0-50 wt% were prepared by co-rotating twin screw extrusion. The abrasion resistance, plane friction coefficient, tensile strengths, and impact strengths of the composites were investigated as a function of the UHMWPE content. An increasing UHMWPE content decreased the plane friction coefficient and increased the abrasion resistance and impact strength. It is expected that HDPE composites reinforced with spherical UHMWPE powder particles can be used to improve the durability of products such as pipes in the future.