• 제목/요약/키워드: strength-based design

검색결과 2,373건 처리시간 0.032초

비대칭 벽식구조의 최적 비틀림 설계 (An optimized torsional design of asymmetric wall structures)

  • 조봉호;홍성걸
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2002년도 춘계 학술발표회 논문집
    • /
    • pp.327-334
    • /
    • 2002
  • This paper develops an optimized torsional design method of asymmetric wall structures considering deformation capacities of walls. Contrary to the current torsional provisions, a deformation based torsional design is based on the assumption that stiffness and strength are dependent. Current torsional provisions specify two design eccentricity of stiffness to calculate the design forces of members. But such a methodology leads to an excessive over-strength of some members and an optimal torsional behavior is not ensured. Deformation-based torsional design uses displacement and rotation angle as design parameters and calculates base shear for inelastic torsional response directly. Because optimal torsional behavior can be defined based on the deformation of members, deformation based torsional design procedure can be applied to the optimal and performance-based torsional design. To consider the effect of accidental eccentricity, an over-strength factor is defined. The over-strength factor is determined from performance level, torsional resistance and arrangement of walls.

  • PDF

Knowledge-based learning for modeling concrete compressive strength using genetic programming

  • Tsai, Hsing-Chih;Liao, Min-Chih
    • Computers and Concrete
    • /
    • 제23권4호
    • /
    • pp.255-265
    • /
    • 2019
  • The potential of using genetic programming to predict engineering data has caught the attention of researchers in recent years. The present paper utilized weighted genetic programming (WGP), a derivative model of genetic programming (GP), to model the compressive strength of concrete. The calculation results of Abrams' laws, which are used as the design codes for calculating the compressive strength of concrete, were treated as the inputs for the genetic programming model. Therefore, knowledge of the Abrams' laws, which is not a factor of influence on common data-based learning approaches, was considered to be a potential factor affecting genetic programming models. Significant outcomes of this work include: 1) the employed design codes positively affected the prediction accuracy of modeling the compressive strength of concrete; 2) a new equation was suggested to replace the design code for predicting concrete strength; and 3) common data-based learning approaches were evolved into knowledge-based learning approaches using historical data and design codes.

Design parameter dependent force reduction, strength and response modification factors for the special steel moment-resisting frames

  • Kang, Cheol Kyu;Choi, Byong Jeong
    • Steel and Composite Structures
    • /
    • 제11권4호
    • /
    • pp.273-290
    • /
    • 2011
  • In current ductility-based earthquake-resistant design, the estimation of design forces continues to be carried out with the application of response modification factors on elastic design spectra. It is well-known that the response modification factor (R) takes into account the force reduction, strength, redundancy, and damping of structural systems. The key components of the response modification factor (R) are force reduction ($R_{\mu}$) and strength ($R_S$) factors. However, the response modification and strength factors for structural systems presented in design codes were based on professional judgment and experiences. A numerical study has been accomplished to evaluate force reduction, strength, and response modification factors for special steel moment resisting frames. A total of 72 prototype steel frames were designed based on the recommendations given in the AISC Seismic Provisions and UBC Codes. Number of stories, soil profiles, seismic zone factors, framing systems, and failure mechanisms were considered as the design parameters that influence the response. The effects of the design parameters on force reduction ($R_{\mu}$), strength ($R_S$), and response modification (R) factors were studied. Based on the analysis results, these factors for special steel moment resisting frames are evaluated.

확률론적 방법을 적용한 도로교량의 비파괴 압축강도식 평가 (Comparison Study on Nondestructive Strength Equation Based on Probability for Bridges)

  • 김훈겸
    • 한국도로학회논문집
    • /
    • 제20권3호
    • /
    • pp.39-46
    • /
    • 2018
  • PURPOSES: This study is to estimate nondestructive strength equation based on probability for bridges using field test data. METHODS : In this study, a series of the field inspection and the test have been performed on 297 existing bridges, in order to evaluate the bridges, based on the test results of the in-depth inspection, and the estimated strengths by means of the nondestructive strength equations are analyzed and compared with results of the core specimen strengths. RESULTS : According to results of analyses, In case of standard design compressive strength of concrete is 18MPa, 21MPa, similar reliability of RILEM equation were 0.89~0.90, but in case of standard design compressive strength of concrete is 35MPa, 40MPa were 0.4~0.56. According to standard design compressive strength of concrete is 40MPa, similar reliability of ultrasonic pulse velocity method equation were 0.56. CONCLUSIONS :RILEM equation had high similar reliability than other equation in case of standard design compressive strength of concrete is 18MPa, 21MPa, but had low similar reliability than other equation in case of standard design compressive strength of concrete is 35MPa, 40MPa. and ultrasonic pulse velocity method equation had low similar reliability than other equation in case of standard design compressive strength of concrete is 40MPa.

패널 존의 비탄성거동과 설계강도 (Inelastic Behavior and Design Strength of Panel Zones)

  • 김동성;김기동;고만기
    • 한국방재학회:학술대회논문집
    • /
    • 한국방재학회 2008년도 정기총회 및 학술발표대회
    • /
    • pp.49-52
    • /
    • 2008
  • The design strength of panel zones, which was based on Krawinkler model, was investigated by comparing it with existing test and FEM results. The design strength overestimates of the strength of panel zones with thick column flange while it matches well with the strength of panel zones with thin column flange. More extensive studies are needed to develop a mathematical model which can properly define the inelastic behavior of panel zones with various column flange thicknesses and to determine a more rational design strength.

  • PDF

Minimum deformability design of high-strength concrete beams in non-seismic regions

  • Ho, J.C.M.;Zhou, K.J.H.
    • Computers and Concrete
    • /
    • 제8권4호
    • /
    • pp.445-463
    • /
    • 2011
  • In the design of reinforced concrete (RC) beams, apart from providing adequate strength, it is also necessary to provide a minimum deformability even for beams not located in seismic regions. In most RC design codes, this is achieved by restricting the maximum tension steel ratio or neutral axis depth. However, this empirical deemed-to-satisfy method, which was developed based on beams made of normal-strength concrete (NSC) and normal-strength steel (NSS), would not provide a consistent deformability to beams made of high-strength concrete (HSC) and/or high-strength steel (HSS). More critically, HSC beams would have much lower deformability than that provided previously to NSC beams. To ensure that a consistent deformability is provided to all RC beams, it is proposed herein to set an absolute minimum rotation capacity to all RC beams in the design. Based on this requirement, the respective maximum limits of tension steel ratio and neutral axis depth for different concrete and steel yield strengths are derived based on a formula developed by the authors. Finally for incorporation into design codes, simplified guidelines for designing RC beams having the proposed minimum deformability are developed.

Evaluation of seismic energy demand and its application on design of buckling-restrained braced frames

  • Choi, Hyunhoon;Kim, Jinkoo
    • Structural Engineering and Mechanics
    • /
    • 제31권1호
    • /
    • pp.93-112
    • /
    • 2009
  • In this study seismic analyses of steel structures were carried out to examine the effect of ground motion characteristics and structural properties on energy demands using 100 earthquake ground motions recorded in different soil conditions, and the results were compared with those of previous works. Analysis results show that ductility ratios and the site conditions have significant influence on input energy. The ratio of hysteretic to input energy is considerably influenced by the ductility ratio and the strong motion duration. It is also observed that as the predominant periods of the input energy spectra are significantly larger than those of acceleration response spectra used in the strength design, the strength demand on a structure designed based on energy should be checked especially in short period structures. For that reason framed structures with buckling-restrained-braces (BRBs) were designed in such a way that all the input energy was dissipated by the hysteretic energy of the BRBs, and the results were compared with those designed by conventional strength-based design procedure.

Polymer concrete filled circular steel beams subjected to pure bending

  • Oyawa, Walter O.;Sugiura, Kunitomo;Watanabe, Eiichi
    • Steel and Composite Structures
    • /
    • 제4권4호
    • /
    • pp.265-280
    • /
    • 2004
  • In view of the mounting cost of rehabilitating deteriorating infrastructure, further compounded by intensified environmental concerns, it is now obvious that the evolvement and application of advanced composite structural materials to complement conventional construction materials is a necessity for sustainable construction. This study seeks alternative fill materials (polymer-based) to the much-limited cement concrete used in concrete-filled steel tubular structures. Polymers have been successfully used in other industries and are known to be much lighter, possess high tensile strength, durable and resistant to aggressive environments. Findings of this study relating to elasto-plastic characteristics of polymer concrete filled steel composite beams subjected to uniform bending highlight the enormous increase in stiffness, strength and ductility of the composite beams, over the empty steel tube. Moreover, polymer based materials were noted to present a wide array of properties that could be tailored to meet specific design requirements e.g., ductility based design or strength based design. Analytical formulations for design are also considered.

양축방향 면내압축과 전단하중을 받는 선박 이중판의 강도 평가 (Strength Evaluation of a Doubler Plate of a Ship S011c111re subjected to Biaxial In-plane Compression and Shear Load)

  • 함주혁
    • 한국해양공학회지
    • /
    • 제15권1호
    • /
    • pp.85-91
    • /
    • 2001
  • A study for the structural strength analysis on the doubler plate subjected biaxial in-plane compression and shear load has been performed through the systematic evaluation process. In order to estimate the proper static strength of the doubler plate, non-linear elasto-plastic analysis is introduced. Gap element modeling for contact effect between the main plate and the doubler is prepared and nonlinear analysis procedures are illustrated based on MSC/N4W. In addition, some design guides are suggested through the consideration of several important effects such as corrosion of main plate, doubler width, doubler length and doubler thickness. Finally, theses result are compared with a developed design formula based on the buckling strength and general trends. The design guides, according to the variation of design parameters are discussed.

  • PDF

재사용 시스템비계와 시스템동바리 수직재의 허용강도 분석 (Analysis of Allowable Strength of Reused Vertical Members of System Scaffolds and System Supports)

  • 박진석;고상섬;원정훈
    • 한국안전학회지
    • /
    • 제36권4호
    • /
    • pp.29-36
    • /
    • 2021
  • The allowable strength based on experiments and the design allowable strength calculated using the design criteria were compared, which suggested a ratio between the allowable strengths for the reused vertical members of the system scaffolding and system support. By investigating a total of 421 certification reports for reused vertical members, the experimental allowable strengths were collected. Using design criteria such as the road bridge design and KDS 14 30 10, the design allowable strengths were calculated for various slenderness ratios. For the system scaffolding, the average ratio between the experimental and design allowable strengths was calculated to be 0.880 by assuming a normal distribution for all specimens. However, by analyzing the strength ratio according to the slenderness ratio, the lowest average strength ratio was found to be at least 0.844. Therefore, it is reasonable to assume that the allowable strength of the reused vertical members was 80-84% of the design allowable strength. In addition, assuming the allowable strength to be 85% of the design allowable strength is a possible method for reused vertical members of system supports.