Browse > Article
http://dx.doi.org/10.12989/sem.2009.31.1.093

Evaluation of seismic energy demand and its application on design of buckling-restrained braced frames  

Choi, Hyunhoon (Department of Architectural Engineering, Sungkyunkwan University)
Kim, Jinkoo (Department of Architectural Engineering, Sungkyunkwan University)
Publication Information
Structural Engineering and Mechanics / v.31, no.1, 2009 , pp. 93-112 More about this Journal
Abstract
In this study seismic analyses of steel structures were carried out to examine the effect of ground motion characteristics and structural properties on energy demands using 100 earthquake ground motions recorded in different soil conditions, and the results were compared with those of previous works. Analysis results show that ductility ratios and the site conditions have significant influence on input energy. The ratio of hysteretic to input energy is considerably influenced by the ductility ratio and the strong motion duration. It is also observed that as the predominant periods of the input energy spectra are significantly larger than those of acceleration response spectra used in the strength design, the strength demand on a structure designed based on energy should be checked especially in short period structures. For that reason framed structures with buckling-restrained-braces (BRBs) were designed in such a way that all the input energy was dissipated by the hysteretic energy of the BRBs, and the results were compared with those designed by conventional strength-based design procedure.
Keywords
input energy; hysteretic energy; energy-based seismic design; strength-based design;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 2  (Related Records In Web of Science)
Times Cited By SCOPUS : 2
연도 인용수 순위
1 AISC (1999), Load and Resistance Factor Design Specification for Structural Steel Buildings, American Institute of Steel Construction, Chicago, IL
2 AISC (2002), Seismic Provisions for Structural Steel Buildings, American Institute of Steel Construction, Chicago, IL
3 Akbas, B. (2006), 'A neural network model to assess the hysteretic energy demand in steel moment resisting frames', Struct. Eng. Mech., 23(2), 177-193   DOI   ScienceOn
4 Akbas, B., Shen, J. and Hao, H. (2001), 'Energy approach in performance-based seismic design of steel moment resisting frames for basic safety objective', Struct. Des. Tall Build., 10(3), 193-217   DOI   ScienceOn
5 Akiyama, H. (1985), Earthquake-resistant Limit-state Design for Buildings, University of Tokyo Press, Japan
6 Arias, A. (1970), 'A measure of earthquake intensity', in Seismic Design for Nuclear Power Plants, ed. R.J Hansen, Massachusetts Institute of Technology Press, 438-469
7 Black, C., Makris, N. and Aiken, I. (2002), 'Component testing, stability analysis and characterization of buckling restrained braces', PEER Report 2002/08, Pacific Earthquake Engineering Research Center, University of California, Berkeley
8 Bojorquez, E. and Ruiz, S.E. (2004), 'Strength reduction factors for the Valley of Mexico, considering low-cycle fatigue effects', 13th World Conference on Earthquake Engineering, Vancouver, Canada, Paper No. 516
9 Bruneau, M. and Wang, N. (1996), 'Some aspects of energy methods for the inelastic seismic response of ductile SDOF structures', Eng. Struct., 18(1), 1-12   DOI   ScienceOn
10 Building Seismic Safety Council (2004), 'NEHRP Recommended provisions for seismic regulations for new buildings and other structures, 2003 Edition, Part 1: Provisions', Report No. FEMA-450, Federal Emergency Management Agency, Washington, D.C
11 Choi, H. and Kim, J. (2006a), 'Energy-based seismic design of buckling-restrained braced frames using hysteretic energy spectrum', Eng. Struct., 28(2), 304-311   DOI   ScienceOn
12 Choi, H., Kim, J. and Chung, L. (2006b), 'Seismic design of buckling-restrained braced frames based on a modified energy-balance concept', Can. J. Civil Eng., 33(10), 1251-1260   DOI   ScienceOn
13 Chopra, A.K. (1995), Dynamics of Structures: Theory and Applications to Earthquake Engineering, Prentice Hall Inc., New Jersey
14 Cruz, M.F. and Lopez, O.A. (2000), 'Plastic energy dissipated during an earthquake as a function of structural properties and ground motion characteristics', Eng. Struct., 22(7), 784-792   DOI   ScienceOn
15 Decanini, L.D. and Mollaioli, F. (2001), 'An energy-based methodology for the assessment of seismic demand', Soil Dyn. Earthq. Eng., 21(2), 113-137
16 Fajfar, P. and Vidic, T. (1994), “Consistent inelastic design spectra: Hysteretic and input energy”, Earthq. Eng. Struct. Dyn., 23(5), 523-537   DOI   ScienceOn
17 Housner, G.W. (1956), 'Limit design of structures to resist earthquakes', Proceedings of the First World Conference on Earthquake Engineering, Berkeley, California
18 ICC (2006), 2006 International Building Code, International Code Council Inc., Country Club Hills, IL
19 Khashaee, P., Mohraz, B., Sadek, F., Lew, H.S. and Gross, J.L. (2003), 'Distribution of earthquake input energy in structures', Report No. NISTIR 6903, National Institute of Standards and Technology, Washington
20 Kim, J., Choi, H. and Chung, L. (2004), 'Energy-based seismic design of structures with buckling-restrained braces', Steel Compos. Struct., 4(6), 437-452   ScienceOn
21 Leelataviwat, S., Goel, S.C. and Stojadinovi, B. (2002), 'Energy-based seismic design of structures using yield mechanism and target drift', J. Struct. Eng., 128(8), 1046-1054   DOI   ScienceOn
22 Mahin, S.A. and Lin, J. (1983), 'Inelastic response spectra for single degree of freedom systems', Department of Civil Engineering, University of California, Berkeley
23 Merritt, S., Uang, C.M. and Benzoni, G. (2003), 'Subassemblage testing of corebrace buckling-restrained braces', Report No. TR-2003/01, University of California, San Diego
24 Nakashima, M., Saburi, K. and Tsuji, B. (1996), 'Energy input and dissipation behaviour of structures with hysteretic dampers', Earthq. Eng. Struct. Dyn., 25(5), 483-496   DOI
25 Somerville, P., Smith, H., Puriyamurthala, S. and Sun, J. (1997), 'Development of Ground Motion Time Histories for Phase 2 of the FEMA/SAC Steel Project', SAC Joint Venture, SAC/BD 97/04
26 Teran-Gilmore, A. (1996), 'Performance-based earthquake-resistant design of framed buildings using energy concept', Ph. D. Thesis, University of California at Berkeley
27 Teran-Gilmore, A. and Jirsa, J.O. (2004), 'The use of cumulative ductility strength spectra for seismic design against low cycle fatigue', 13th World Conference on Earthquake Engineering, Vancouver, Canada, Paper No. 889
28 Trifunac, M.D. and Brady, A.G. (1975), 'A study on the duration of strong earthquake ground motion,' B. Seismol. Soc. Am., 65(3), 581-626
29 Uang, C.M. and Bertero, V.V. (1988), 'Use of energy as a design criterion in earthquake-resistant design', Report No. UCB/EERC-88/18, Earthquake Engineering Research Center, University of California at Berkeley
30 Tsai, K.C. and Li, J.W. (1997), 'DRAIN2D+, A general purpose computer program for static and dynamic analyses of inelastic 2D structures supplemented with a graphic processor', Report No. CEER/R86-07, National Taiwan University, Taipei, Taiwan
31 Zahrah, T. and Hall, J. (1984), 'Earthquake energy absorption in SDOF structures', J. Struct. Eng., 110(8), 1757-1772   DOI   ScienceOn