• 제목/요약/키워드: strength safety

검색결과 2,742건 처리시간 0.024초

고강도 콘크리트를 적용한 얇은 RC 판부재의 정적 강도 안전성 평가 (Structural Safety Evaluation for Static Strength of Thin Plate RC Member with High Strength Concrete)

  • 황훈희;박성용
    • 한국안전학회지
    • /
    • 제32권5호
    • /
    • pp.69-75
    • /
    • 2017
  • Structural safety evaluation for static strength of thin plate RC member with high strength concrete is conducted in this study. Static strengths were predicted and compared with the experimental values. Predicted values were calculated by the evaluation formula based on the punching shear behavior and the yield line theory which can appear in the plate members. Static load tests were carried out for the specimens with high strength concrete and the test results were compared with the required performance in design. The comparison results show that the specimens with high strength concrete have sufficient structural safety for flexural and punching shear performance required in design. High strength concrete specimens exhibited excellent strength despite their small thickness. The range of concrete strengths applied in this study was about 60 MPa to 100 MPa.

추락 방지용 보조로프의 고정 매듭법과 옥외 노출 환경에 따른 강도저하 평가에 관한 연구 (Experimental Study of Strength Degradation according to Fixed Knot Method and Outdoor Exposure Environment of Auxiliary Rope for High Altitude Work)

  • 송상민;김태선;김건엽;김송미;권오헌;박우림
    • 한국안전학회지
    • /
    • 제38권3호
    • /
    • pp.10-19
    • /
    • 2023
  • Fall accidents account for the highest accident fatality rate in the construction industry. In addition, wearing and using a safety belt is the most realistic and important preventive measure to reduce fall accidents. Safety belts are protective devices worn by individual workers; they prevent workers from falling and allow for time to rescue the workers. However, the legal standards for safety belts only stipulate the materials, specifications, and strength of parts; there is no provision for an auxiliary rope fixing method to fix the safety belts safely. Due to this reason, workers in industrial sites arbitrarily fix and use the auxiliary rope. Currently, the most used method to fix the auxiliary rope is to tie a knot, which significantly lowers the strength of the material compared to the standard strength. Moreover, many construction sites are located outdoors, so the strength of the materials used in the auxiliary rope is inevitably reduced due to various external environmental conditions. Therefore, to solve this problem, this study was conducted to evaluate the strength of the material of the auxiliary rope for fixing the safety belt and the knot-tying method for the auxiliary rope. In this study, the exposure conditions for the effects of temperature and moisture were set to reflect the characteristics of the construction industry. The results of this study are expected to be used for standards establishment and the safe use of the auxiliary rope for safety belts in actual field applications.

장갑 착용이 악력과 안전에 미치는 영향에 관한 연구 (A Study of the Effects of Wearing Gloves on Grip Strength and Safety)

  • 정화식;구동호
    • 대한안전경영과학회지
    • /
    • 제8권4호
    • /
    • pp.13-23
    • /
    • 2006
  • Grip strength provides a quick and objective index of the functional integrity of the upper extremities. It is widely used as an assessment measure in physical and rehabilitation medicine. In this study, maximum voluntary grip strength of 20 college students wearing 5 different gloves were measured using Jamar hand dynamometer. The results show that maximum voluntary grip strength was generally reduced when wearing gloves as compared to bare-handed. More specifically, the grip strength was highest when wearing PVC coated glove or bare-handed and getting lowered as wrist band, rubber, leather, and cotton glove in these order. Depending on the measuring posture of grip strength, shoulder height with arm extended forward was higher than the elbow was flexed 90 degree. Moreover, subjects' demographic factors and hand dimensions were not closely related to the grip strength. It is thus recommended that the proper glove should be provided to reduce the negative consequences including dropping a tool, poorer control of a tool. lower quality work, and increased muscle fatigue and in turn to increase the user safety and satisfaction.

Determination of spalling strength of rock by incident waveform

  • Tao, Ming;Zhao, Huatao;Li, Xibing;Ma, Jialu;Du, Kun;Xie, Xiaofeng
    • Geomechanics and Engineering
    • /
    • 제12권1호
    • /
    • pp.1-8
    • /
    • 2017
  • An experimental technique for determining the spalling strength of rock-like materials under a high strain rate is developed. It is observed that the spalling strength of a specimen can be determined by only knowing the wavelength, loading peak value and length of the first spallation of an incident wave under a specific loading waveform. Using this method in combination with a split-Hopkinson pressure bar (SHPB) and other experimental devices, the spalling strength of granite specimens under a high strain rate is tested. Comparisons with other experimental results show that the new measuring method can accurately calculate the dynamic tensile strength of rock materials under a high strain rate.

폐콘크리트 순환자원을 이용한 건설재료의 특성연구 (A Experimental Study on the Construction Material Using the Circulation Resources)

  • 홍세화;손기상;최재남
    • 한국안전학회지
    • /
    • 제25권2호
    • /
    • pp.41-46
    • /
    • 2010
  • This is to show some basic data for introducing both circulated aggregate and recycled powder producing waste concrete. Standard-mixing design for 24MPa has been basically used and added and replaced normal aggregate with recycled powder made of waste concrete. In addition, polycarboxylate high-range water reducing agent has been used because recycled powder is missing adhesive strength and it is not compare with cement's adhesive strength. Compressive strength with powder mixture of 2%, 4%, 6%, 8%, and 10% has been decreased down to 80% of normal concrete material strength without recycled powder mixture. This result has same decreasing proportion to tensile strength of the material. Resistant capacity change of beam varying with recycled powder mixture has been decreased down to 60% of normal concrete bean capacity, while there are 80% decrease of material strength. But strength and capacity change has same consistent decrease ratio. It is found that recycled powder with approximately 15% unit concrete volume can be replaced with cement in reasonable admixture mixing condition.

철골브레이스에 의한 기존 RC건축물의 강도상승형 내진보강을 위한 설계고려사항 (The design considerations of steel braced frame for seismic retrofit through increasing the lateral strength of existing RC buildings)

  • 안충원;윤정환;송동엽;장범수;민찬기
    • 한국지진공학회논문집
    • /
    • 제17권6호
    • /
    • pp.293-303
    • /
    • 2013
  • This paper deals with steel braced frame as increasing the lateral strength and ductility in order to seismic retrofit of existing buildings and discusses the designing criteria and calculation method of retrofitted buildings. The addition of steel braced frame can be effective for increasing the lateral strength and ductility of existing buildings. However, There is a problem in utilizing this method. It is the approach to provide an adequate connection between the existing RC frame and the installed steel braced frame, because global strength by failure mode(three type) depends on detail of connection and strength of existing RC frame. So, the designer must be confirmed if it satisfies the required performance or not. Failure mode of type I is the most appropriate for increasing the lateral strength and ductility. Seismic performance evaluation and strength calculation of seismic retrofit are performed by guideline by KISTEC(Korea Infrastructure Safety & Technology)'s "seismic performance evaluation and rehabilitation of existing buildings" and Japan Building Disaster Prevention Association. Buildings are modeled and non-linear pushover analysis are performed using MIDAS program.

재사용 시스템비계와 시스템동바리 수직재의 허용강도 분석 (Analysis of Allowable Strength of Reused Vertical Members of System Scaffolds and System Supports)

  • 박진석;고상섬;원정훈
    • 한국안전학회지
    • /
    • 제36권4호
    • /
    • pp.29-36
    • /
    • 2021
  • The allowable strength based on experiments and the design allowable strength calculated using the design criteria were compared, which suggested a ratio between the allowable strengths for the reused vertical members of the system scaffolding and system support. By investigating a total of 421 certification reports for reused vertical members, the experimental allowable strengths were collected. Using design criteria such as the road bridge design and KDS 14 30 10, the design allowable strengths were calculated for various slenderness ratios. For the system scaffolding, the average ratio between the experimental and design allowable strengths was calculated to be 0.880 by assuming a normal distribution for all specimens. However, by analyzing the strength ratio according to the slenderness ratio, the lowest average strength ratio was found to be at least 0.844. Therefore, it is reasonable to assume that the allowable strength of the reused vertical members was 80-84% of the design allowable strength. In addition, assuming the allowable strength to be 85% of the design allowable strength is a possible method for reused vertical members of system supports.

전기철도용 유리애자 전기적 강도 해석 (Electrical Strength Analysis of Toughened Glass Stem Insulator for Electric Railways)

  • 정종욱;정진수;김영석;김선구
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 하계학술대회 논문집 Vol.9
    • /
    • pp.263-263
    • /
    • 2008
  • This paper describes the electrical strength of a toughened glass stem insulators employed for electric railways. The broken glass stem insulators for comparison were taken at site. According to the international standards, electrical strength tests with 60[Hz] voltage and with impulse voltage were carried out to them under dry and wet condition and the results were corrected by considering the temperature and humidity factors. Based on the experimental results, the electrical strength of broken glass stem insulators was compared with those of sound ones and surface flashover characteristics were also discussed. As a result, it was confirmed that the electrical discharge is formed by bridging each end of the insulator shell. The experimental results are expected to be utilized as data for electrically identifying the failure causes of glass insulators.

  • PDF

Prediction of compressive strength of concrete using neural networks

  • Al-Salloum, Yousef A.;Shah, Abid A.;Abbas, H.;Alsayed, Saleh H.;Almusallam, Tarek H.;Al-Haddad, M.S.
    • Computers and Concrete
    • /
    • 제10권2호
    • /
    • pp.197-217
    • /
    • 2012
  • This research deals with the prediction of compressive strength of normal and high strength concrete using neural networks. The compressive strength was modeled as a function of eight variables: quantities of cement, fine aggregate, coarse aggregate, micro-silica, water and super-plasticizer, maximum size of coarse aggregate, fineness modulus of fine aggregate. Two networks, one using raw variables and another using grouped dimensionless variables were constructed, trained and tested using available experimental data, covering a large range of concrete compressive strengths. The neural network models were compared with regression models. The neural networks based model gave high prediction accuracy and the results demonstrated that the use of neural networks in assessing compressive strength of concrete is both practical and beneficial. The performance of model using the grouped dimensionless variables is better than the prediction using raw variables.

Dynamic response of coal and rocks under high strain rate

  • Zhou, Jingxuan;Zhu, Chuanjie;Ren, Jie;Lu, Ximiao;Ma, Cong;Li, Ziye
    • Geomechanics and Engineering
    • /
    • 제29권4호
    • /
    • pp.451-461
    • /
    • 2022
  • The roadways surrounded by rock and coal will lose their stability or even collapse under rock burst. Rock burst mainly involves an evolution of dynamic loading which behaves quite differently from static or quasi-static loading. To compare the dynamic response of coal and rocks with different static strengths, three different rocks and bituminous coal were selected for testing at three different dynamic loadings. It's found that the dynamic compression strength of rocks and bituminous coal is much greater than the static compression strength. The dynamic compression strength and dynamic increase factor of the rocks both increase linearly with the increase of the strain rate, while those of the bituminous coal are irregular due to the characteristics of multi-fracture and heterogeneity. Moreover, the absorbed energy of the rocks and bituminous coal both increase linearly with an increase in the strain rate. And the ratio of absorbed energy to the total energy of bituminous coal is greater than that of rocks. With the increase of dynamic loading, the failure degree of the sample increases, with the increase of the static compressive strength, the damage degree also increases. The static compassion strength of the bituminous coal is lower than that of rocks, so the number of small-scale fragments was the largest after bituminous coal rupture.