• 제목/요약/키워드: strength ratios

검색결과 1,624건 처리시간 0.027초

Synthesizing and Assessing Fire-Resistant Geopolymer from Rejected Fly Ash

  • An, Eung-Mo;Cho, Young-Hoon;Chon, Chul-Min;Lee, Dong-Gyu;Lee, Sujeong
    • 한국세라믹학회지
    • /
    • 제52권4호
    • /
    • pp.253-263
    • /
    • 2015
  • Ordinary Portland cement is a widely favored construction material because of its good strength and durability and its reasonable price; however, spalling behaviour during fire exposure can be a serious risk that can lead to strength degradation or collapse of a building. Geopolymers, which can be synthesized by mixing aluminosilicate source materials such as metakaolin and fly ash, and alkali activators, are resistant to fire. Because the chemical composition of geopolymers controls the properties of the geopolyers, geopolymers with various Si:Al ratios were synthesized and evaluated as fire resistant construction materials. Rejected fly ash generated from a power plant was quantitatively analyzed and mixed with alkali activators to produce geopolymers having Si:Al ratios of 1.5, 2.0, and 3.5. Compressive strength of the geopolymers was measured at 28 days before and after heating at $900^{\circ}C$. Geopolymers having an Si:Al ratio of 1.5 presented the best fire resistance, with a 44% increase of strength from 29 MPa to 41 MPa after heating. This material also showed the least expansion-shrinkage characteristics. Geopolymer mortar developed no spalling and presented more than a 2 h fire resistance rating at $1,050^{\circ}C$ during the fire testing, with a cold side temperature of $74^{\circ}C$. Geopolymers have high potential as a fire resistant construction material in terms of their increased strength after exposure to fire.

미생물을 활용한 지반개량제의 혼합비율에 따른 사질토의 강도개선 효과 (Effect of Mixed Ratios of Ground Improvement Material using Microorganisms on the Strength of Sands)

  • 박경호;김대현
    • 한국지반신소재학회논문집
    • /
    • 제14권2호
    • /
    • pp.1-9
    • /
    • 2015
  • 본 연구에서는 미생물 반응으로 생성된 탄산칼슘을 분말로 제작하여 연약지반(모래)의 강도 증진 효과를 확인하고자 하였다. 미생물반응으로 생성된 탄산칼슘의 고결화 효과를 분석하기 위해 6가지 case(무처리, 탄산칼슘, 시멘트, 탄산칼슘+시멘트(1:9, 3:7, 5:5))를 모래 중량비에 따라 고결제를 달리(4%, 8%)하여 양생후(7일, 28일) 실험을 하였다. 또한 현장여건과 비슷한 조건의 실험을 하기 위해서 중량비에 따라 세립분(0%, 5%, 15%)를 추가하여 $D5cm{\times}H10cm$ 공시체로 성형한 후 일축압축강도를 측정하였다. 그 결과, 중량비와 양생일이 증가할수록 탄산칼슘, 시멘트, 탄산칼슘+시멘트 모두 강도가 증가하는 경향을 확인하였다. 또한 시멘트 강도 대비 중량비 1:9, 3:7, 5:5의 탄산칼슘+시멘트 강도를 비교한 결과 각각 93.5~95.8%, 82.5%, 65.2~70.6%로 나타났다.

복합섬유(PP, NY)를 혼입한 60, 80MPa 3성분계 고강도콘크리트의 내화특성 (Spalling Properties of 60, 80MPa High Strength Concrete with Fiber)

  • 김성덕;김상연;배기선;박수희;이범식
    • 한국건축시공학회지
    • /
    • 제10권4호
    • /
    • pp.3-9
    • /
    • 2010
  • 본 연구는 고강도콘크리트의 내화성능 증진에 효과적인 것으로 알려진 섬유(PP+NY) 혼입율 변화에 따른 60 MPa, 80 MPa 3성분계 고강도콘크리트의 유동성 및 강도특성을 검토하고 내화시험을 통해 폭렬현상을 확인하였다. 섬유(PP+NY) 혼입율을 0%, 0.05%, 0.1%, 0.2%로 산정하여 실험한 결과, 유동성 및 강도가 미세하지만 저하하는 것으로 나타났으나, 전반적으로 목표 범위를 만족하는 것으로 나타났다. 3시간 내화 후 폭렬특성으로 0%에서는 폭렬현상이 나타났지만, 0.05%이상에서는 표면에 미세한 균열만 발생하고 피복 탈락현상은 나타나지 않는 것으로 나타났다. 또한 폭렬이 발생되지 않은 공시체의 경우 잔존압축강도율이 5 ~ 6%로 나타났다. 이상 적은 양의 섬유(PP+NY)혼입율인 0.05%이상에서 폭렬현상이 방지되어 가장 양호한 것으로 판단된다.

재령 및 배합특성을 고려한 보통 콘크리트의 강도, 염화물 확산계수, 통과전하량 변화 분석 (Analysis on Changes in Strength, Chloride Diffusion, and Passed Charges in Normal Concrete Considering Ages and Mix Proportions)

  • 이학수;권성준
    • 한국건설순환자원학회논문집
    • /
    • 제5권1호
    • /
    • pp.1-7
    • /
    • 2017
  • 초기재령에서의 콘크리트 거동은 시간의 증가에 따른 수화반응에 따라 변화하는데, 염해 저항성과 강도 특성은 다르게 변화한다. 본 연구에서는 재령이 28일에서 6개월로 증가하면서 변화하는 강도 및 염해 저항특성을 보통 콘크리트에 대하여 분석하였다. 이를 위해 3개의 물-시멘트비를 가진 일반 콘크리트에 대하여, 재령 28일과 6개월 수중양생을 수행하였으며, 강도, 염화물 확산계수, 통과전하량을 평가하였다. 재령이 28일에서 6개월로 증가하면서 강도변화는 135.3~138.3% 수준으로 증가하였으나, 염화물 확산계수의 경우 41.8%~51.1% 수준으로, 통과전하량의 경우 53.6%~70.0% 수준으로 감소하였다. 염화물 확산계수와 통과전하량의 경우는 비교적 비슷한 수준으로 감소하였는데, 두 결과는 전기장 내에서의 염화물 이동에 지배적이기 때문이다. 또한 강도의 변화비보다 염화물 확산계수 및 통과전하량의 변화비가 크게 증가하였는데, 이는 공극특성의 제곱에 비례하여 물질이동 특성이 변하기 때문이다.

Confinement models for high strength short square and rectangular concrete-filled steel tubular columns

  • Aslani, Farhad;Uy, Brian;Wang, Ziwen;Patel, Vipul
    • Steel and Composite Structures
    • /
    • 제22권5호
    • /
    • pp.937-974
    • /
    • 2016
  • While extensive efforts have been made in the past to develop finite element models (FEMs) for concrete-filled steel tubular columns (CFSTCs), these models may not be suitable to be used in some cases, especially in view of the utilisation of high strength steel and high strength concrete. A method is presented herein to predict the complete stress-strain curve of concrete subjected to tri-axial compressive stresses caused by axial load coupled with lateral pressure due to the confinement action in square and rectangular CFSTCs with normal and high strength materials. To evaluate the lateral pressure exerted on the concrete in square and rectangular shaped columns, an accurately developed FEM which incorporates the effects of initial local imperfections and residual stresses using the commercial program ABAQUS is adopted. Subsequently, an extensive parametric study is conducted herein to propose an empirical equation for the maximum average lateral pressure, which depends on the material and geometric properties of the columns. The analysis parameters include the concrete compressive strength ($f^{\prime}_c=20-110N/mm^2$), steel yield strength ($f_y=220-850N/mm^2$), width-to-thickness (B/t) ratios in the range of 15-52, as well as the length-to-width (L/B) ratios in the range of 2-4. The predictions of the behaviour, ultimate axial strengths, and failure modes are compared with the available experimental results to verify the accuracy of the models developed. Furthermore, a design model is proposed for short square and rectangular CFSTCs. Additionally, comparisons with the prediction of axial load capacity by using the proposed design model, Australian Standard and Eurocode 4 code provisions for box composite columns are carried out.

Ductility and strength assessment of HSC beams with varying of tensile reinforcement ratios

  • Mohammadhassani, Mohammad;Suhatril, Meldi;Shariati, Mahdi;Ghanbari, Farhad
    • Structural Engineering and Mechanics
    • /
    • 제48권6호
    • /
    • pp.833-848
    • /
    • 2013
  • Nine rectangular-section of High Strength Concrete(HSC) beams were designed and casted based on the American Concrete Institute (ACI) code provisons with varying of tensile reinforcement ratio as (${\rho}_{min}$, $0.2_{{\rho}b}$, $0.3_{{\rho}b}$, $0.4_{{\rho}b}$, $0.5_{{\rho}b}$, $0.75_{{\rho}b}$, $0.85_{{\rho}b}$, $_{{\rho}b}$, $1.2_{{\rho}b}$). Steel and concrete strains and deflections were measured at different points of the beam's length for every incremental load up to failure. The ductility ratios were calculated and the moment-curvature and load-deflection curves were drawn. The results showed that the ductility ratio reduced to less than 2 when the tensile reinforcement ratio increased to $0.5_{{\rho}b}$. Comparison of the theoretical ductility coefficient from CSA94, NZS95 and ACI with the experimental ones shows that the three mentioned codes exhibit conservative values for low reinforced HSC beams. For over-reinforced HSC beams, only the CSA94 provision is more valid. ACI bending provision is 10 percent conservative for assessing of ultimate bending moment in low-reinforced HSC section while its results are valid for over-reinforced HSC sections. The ACI code provision is non-conservative for the modulus of rupture and needs to be reviewed.

정적 및 동적 하중에서 모래의 액상화 발생 (Occurrence of Sand Liquefaction on Static and Cyclic Loading)

  • 양재혁
    • 한국지반공학회논문집
    • /
    • 제17권6호
    • /
    • pp.235-244
    • /
    • 2001
  • 액상화는 비배수조건에서 흙 강도의 갑작스러운 감소에 기인한다. 이러한 흙 강도의 손실은 과잉간극수압의 발현과 관련된다. 본 연구에서는 최대 및 최소간극비에 영향을 미치는 세립분 함유량이 조사되었다. 또한 포화된 실트질 모래에 대한 정적 및 동적 삼축시험의 결과를 제시하였다. 이들 시험은 액상화강도와 정적 및 동적 거동 특성을 평가하기 위해 수행되었다. 시료는 새만금 유역에서 채취되었으며 공기건조되었다. 결과를 요약하면 다음과 같다. 1) 최대 및 최소간극비선은 유사한 경향으로 나타났다. 2) 최대 및 최소간극비는 20~30%의 세립분 함유량에서 얻어졌다. 3) 구속압력과 과압밀비가 증가할수록 액상화에 대한 저항은 증가하였다. 4) 불안정마찰각은 초기상대밀도의 증가와 함께 커졌다. 5) 유효응력비가 증가함에 따라 액상화에 대한 저항은 감소하였다.

  • PDF

국내화강석재의 피로변형거동에 관한 연구 (A Study on the fatigue deformation behavior of granitic stone in Korea)

  • 김재동;정윤영;장보안
    • 터널과지하공간
    • /
    • 제6권2호
    • /
    • pp.144-156
    • /
    • 1996
  • The deformation behaviors under uniaxial compressive cyclic loading were investigated for fresh rocks and freeze-thaw cycled samples. The Pocheon granite which is one of the most popular building stone in Korea was selected for tests. 0.5 Hz and 50% of dynamic strength were used as test conditions for frequency and fatigue span, respectively. For freezethaw procedure, sample were frozen for 3 hours under the temperature of -2$0^{\circ}C$ and then followed 3 hours thawing under the temperature of +2$0^{\circ}C$. Twenty seven samples were used as untreated and seventy three for freeze-thaw samples. No failure occurred up to 15000 cycles at the stress level of 60% of dynamic strength, indicating that the lowest strees level for fatigue failure may be around 60% of dynamic strength. Permanent strain and damping capacity curves show that there were three stages when rock behaves like under creep. Young's moduli were increased and Possion's ratios were decreased with the increase of the number of cycles. Possion's ratios varied more rapidly than Young's moduli did with the increase of the number of cycles. This may represent that most microcracks developed by fatigue stress are parallel to the axis of loading. The deformation behavior of freeze-thaw cycled samples were almost the same as that of untreated samples. However, the result of freeze-thaw cycled samples showed lower regression constant, indicating that the physical durability of rock is much lowered because of cyclic temperature variation.

  • PDF

화력발전소 매립석탄회를 이용한 성토용 인공골재 개발 연구 (A study on development of artificial aggregates for embankment using reclaimed coal ash from thermoelectric power station)

  • 윤명석;안동욱;장남주;한상재;김수삼
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2008년도 춘계 학술발표회 초청강연 및 논문집
    • /
    • pp.1051-1060
    • /
    • 2008
  • The use of the coal ash for surcharge material, in a view of the environmental aspect, can decrease amount of the reclamation through recycling waste materials as well as prevent a destruction of the ecosystem attributed to sand picking. In addition, it can reduce both unit cost of material and construction expenses. In this study, new construction material as alternative surcharge material using coal ash, which is by-product from thermoelectric power plant, were developed. Mixing ratios of fly ash and bottom ash derived from the coal ash in Samchunpo thermoelectric power plants were determined. Furthermore, mixing conditions depending on the ratios of the cement and gypsum used for chemical additive were determined too. Uniaxial compression strength tests were conducted at different mixing conditions and Design graph of optimum mixing ratio at each required strength for economic efficiency is indicated in this paper.

  • PDF

Experimental study on seismic performance of steel reinforced concrete T-shaped columns

  • Liu, Zuqiang;Zhou, Chaofeng;Xue, Jianyang;Leon, Roberto T.
    • Steel and Composite Structures
    • /
    • 제36권3호
    • /
    • pp.339-353
    • /
    • 2020
  • This study investigates the seismic performance of steel reinforced concrete (SRC) T-shaped columns under low cyclic loading tests. Based on test results of ten half-scale column specimens, failure patterns, hysteretic behavior, skeleton curves, ultimate strength, ductility, stiffness degradation and energy dissipation capacity were analyzed. The main variables included loading angles, axial compression ratios and steel ratios. The test results show that the average values of the ductility factor and the equivalent viscous damping coefficient with respect to the failure of the columns were 5.23 and 0.373, respectively, reflecting good seismic performance. The ductility decreased and the initial stiffness increased as the axial compression ratio of the columns increased. The strength increased with increasing steel ratio, as expected. The columns displaced along the web had higher strength and initial stiffness, while the columns displaced along the flange had better ductility and energy dissipation capacity. Based on the test and analysis results, a formula is proposed to calculate the effective stiffness of SRC T-shaped columns.