• Title/Summary/Keyword: strength prediction model

Search Result 770, Processing Time 0.03 seconds

Construction of Korean Space Weather Prediction Center: Storm Prediction Model

  • Kim, R.S.;Cho, K.S.;Moon, Y.J.;Yi, Yu;Choi, S.H.;Baek, J.H.;Park, Y.D.
    • Bulletin of the Korean Space Science Society
    • /
    • 2008.10a
    • /
    • pp.33.2-33.2
    • /
    • 2008
  • Korea Astronomy and Space Science Institute (KASI) is developing an empirical model for Korean Space Weather Prediction Center (KSWPC). This model predicts the geomagnetic storm strength (Dst minimum) by using only CME parameters, such as the source location (L), speed (V), earthward direction (D), and magnetic field orientation of an overlaying potential field at CME source region. To derive an empirical formula, we considered that (1) the direction parameter has best correlation with the storm strength (2) west $15^{\circ}$ offset from the central meridian gives best correlation between the source location and the storm strength (3) consideration of two groups of CMEs according to their magnetic field orientation (southward or northward) provide better forecast. In this talk, we introduce current status of the empirical storm prediction model development.

  • PDF

Assessment of compressive strength of cement mortar with glass powder from the early strength

  • Wang, Chien-Chih;Ho, Chun-Ling;Wang, Her-Yung;Tang, Chi
    • Computers and Concrete
    • /
    • v.24 no.2
    • /
    • pp.151-158
    • /
    • 2019
  • The sustainable development principle of replacing natural resources with renewable material is an important research topic. In this study, waste LCD (liquid crystal display) glass powder was used to replace cement (0%, 10%, 20% and 30%) through a volumetric method using three water-binder ratios (0.47, 0.59, and 0.71) to make cement mortar. The compressive strength was tested at the ages of 7, 28, 56 and 91 days. The test results show that the compressive strength increases with age but decreases as the water-binder ratio increases. The compressive strength slightly decreases with an increase in the replacement of LCD glass powder at a curing age of 7 days. However, at a curing age of 91 days, the compressive strength is slightly greater than that for the control group (glass powder is 0%). When the water-binder ratios are 0.47, 0.59 and 0.71, the compressive strength of the various replacements increases by 1.38-1.61 times, 1.56-1.80 times and 1.45-2.20 times, respectively, during the aging process from day 7 to day 91. Furthermore, a prediction model of the compressive strength of a cement mortar with waste LCD glass powder was deduced in this study. According to the comparison between the prediction analysis values and test results, the MAPE (mean absolute percentage error) values of the compressive strength are between 2.79% and 5.29%, and less than 10%. Thus, the analytical model established in this study has a good forecasting accuracy. Therefore, the proposed model can be used as a reliable tool for assessing the design strength of cement mortar from early age test results.

Prediction of Residual Strength of CFRP Subjected to High Velocity Impact (고속충격을 받는 CFRP 복합재료의 잔류강도 예측)

  • 박근철;김문생
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.3
    • /
    • pp.600-611
    • /
    • 1994
  • The purpose of this research is to propose a model for the prediction of residual strength. For this purpose, two-paremeter model based on Caprino's is developed and formulated by the ratio of indentation due to impact and normalized residual strength. The damage zone is considered only as an indentation. Impact tests are carried out on laminated composites by steel balls. Test material is carbon/epoxy laminate. The specimens are composed of $[{\pm}45^{\circ}/0^{\circ}/90^{\circ}]_2$ and $[\pm}45^{\circ}]_4$ stacking sequence and have $0.75^T{\times}0.26^W{\times}100^L(mm) dimension. A proposed model shows a good correlation with the experimental results And failure mechanism due to high impact velocity is discussed on CFRP laminates to examine the initiation and development of damage by fractography and ultrasonic image ststem. The effect of the unidirectional ply position on the residual strength is considered here.

Compressive strength prediction by ANN formulation approach for CFRP confined concrete cylinders

  • Fathi, Mojtaba;Jalal, Mostafa;Rostami, Soghra
    • Earthquakes and Structures
    • /
    • v.8 no.5
    • /
    • pp.1171-1190
    • /
    • 2015
  • Enhancement of strength and ductility is the main reason for the extensive use of FRP jackets to provide external confinement to reinforced concrete columns especially in seismic areas. Therefore, numerous researches have been carried out in order to provide a better description of the behavior of FRP-confined concrete for practical design purposes. This study presents a new approach to obtain strength enhancement of CFRP (carbon fiber reinforced polymer) confined concrete cylinders by applying artificial neural networks (ANNs). The proposed ANN model is based on experimental results collected from literature. It represents the ultimate strength of concrete cylinders after CFRP confinement which is also given in explicit form in terms of geometrical and mechanical parameters. The accuracy of the proposed ANN model is quite satisfactory when compared to experimental results. Moreover, the results of the proposed ANN model are compared with five important theoretical models proposed by researchers so far and considered to be in good agreement.

An Experimental Study on the Prediction Model for the Compressive Strength of Concrete with Blast Furnace Slag by Maturity Method (고로슬래그미분말 혼입 콘크리트의 적산온도를 이용한 강도예측모델에 관한 실험적 연구)

  • Yang, Hyun-Min;Cho, Myung-Won;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.11a
    • /
    • pp.107-108
    • /
    • 2012
  • The study on the strength prediction using Maturity is mainly focused on, but the study on the concrete mixing blast furnace slag powder is insufficient. The purpose of this study is to investigate the relationships between compressive strength and equivalent age by Maturity function and is to compare and examine the strength prediction of concrete mixing Blast Furnace Slag Power using ACI and Logistic Curve prediction equation. So it is intended that fundamental data are presented for quality management and process management of concrete mixing Blast Furnace Slag Power in the construction field.

  • PDF

New strut-and-tie-models for shear strength prediction and design of RC deep beams

  • Chetchotisak, Panatchai;Teerawong, Jaruek;Yindeesuk, Sukit;Song, Junho
    • Computers and Concrete
    • /
    • v.14 no.1
    • /
    • pp.19-40
    • /
    • 2014
  • Reinforced concrete deep beams are structural beams with low shear span-to-depth ratio, and hence in which the strain distribution is significantly nonlinear and the conventional beam theory is not applicable. A strut-and-tie model is considered one of the most rational and simplest methods available for shear strength prediction and design of deep beams. The strut-and-tie model approach describes the shear failure of a deep beam using diagonal strut and truss mechanism: The diagonal strut mechanism represents compression stress fields that develop in the concrete web between diagonal cracks of the concrete while the truss mechanism accounts for the contributions of the horizontal and vertical web reinforcements. Based on a database of 406 experimental observations, this paper proposes a new strut-and-tie-model for accurate prediction of shear strength of reinforced concrete deep beams, and further improves the model by correcting the bias and quantifying the scatter using a Bayesian parameter estimation method. Seven existing deterministic models from design codes and the literature are compared with the proposed method. Finally, a limit-state design formula and the corresponding reduction factor are developed for the proposed strut-andtie model.

A Proposal of Parameter Determination Method in the Residual Strength Degradation Model for the Prediction of Fatigue Life (I) (피로수명예측을 위한 잔류강도 저하모델의 파라미터 결정법 제안(I))

  • Kim, Sang-Tae;Jang, Seong-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.5
    • /
    • pp.874-882
    • /
    • 2001
  • The static and fatigue tests have been carried out to verify the validity of a generalized residual strength degradation model. And a new method of parameter determination in the model is verified experimentally to account for the effect of tension-compression fatigue loading of spheroidal graphite cast iron. It is shown that the correlation between the experimental results and the theoretical prediction on the statistical distribution of fatigue life by using the proposed method is very reasonable. Furthermore, it is found that the correlation between the theoretical prediction and the experimental results of fatigue life in case of tension-tension fatigue data in composite material appears to be reasonable. Therefore, the proposed method is more adjustable in the determination of the parameter than maximum likelihood method and minimization technique.

Development of a Prediction Model for the Mechanical Properties of Polypropylene Composites Reinforced by Talc and Short Glass Fibers (탈크 및 유리단섬유로 강화된 폴리프로필렌 복합재료의 기계적 물성 예측 모델 개발)

  • Kim, Soon;Son, Dongil;Choi, Donghyuk;Jeong, Inchan;Park, Young-Bin;Kim, Sung Youb
    • Composites Research
    • /
    • v.26 no.4
    • /
    • pp.245-253
    • /
    • 2013
  • In this paper, we developed a theoretical model which is able to predict the tensile strength and elastic modulus of hybrid composites reinforced by two types of randomly distributed discontinuous reinforcements. For this, we considered two known models; One is a prediction model based on the assumption that the composite is reinforced by two types of well aligned continuous reinforcements. The other is a statistical model for the composite which is reinforced by only one type of randomly distributed discontinuous reinforcements. In order to evaluate the validity of accuracy of our prediction model, we measured the strength and elastic modulus of polypropylene hybrid composite reinforced by talc and short glass fiber. We found that the present model drastically enhances the accuracy of strength prediction compared to an existing model, and predicts the elastic modulus within the same order with experimentally measured values.

Repairable k-out-n system work model analysis from time response

  • Fang, Yongfeng;Tao, Webliang;Tee, Kong Fah
    • Computers and Concrete
    • /
    • v.12 no.6
    • /
    • pp.775-783
    • /
    • 2013
  • A novel reliability-based work model of k/n (G) system has been developed. Unit failure probability is given based on the load and strength distributions and according to the stress-strength interference theory. Then a dynamic reliability prediction model of repairable k/n (G) system is established using probabilistic differential equations. The resulting differential equations are solved and the value of k can be determined precisely. The number of work unit k in repairable k/n (G) system is obtained precisely. The reliability of whole life cycle of repairable k/n (G) system can be predicted and guaranteed in the design period. Finally, it is illustrated that the proposed model is feasible and gives reasonable prediction.

Study on the prediction model of environmental noise from the conventional railway passenger cars (기존선 여객열차의 환경소음 예측모델 연구)

  • Jang, Seungho;Jang, Eunhae;Son, Jung Gon;Park, Byoungju
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.10a
    • /
    • pp.564-569
    • /
    • 2013
  • An accurate railway environmental noise prediction model is required to make the proper solution of the railway noise problems. In this paper, an engineering model for predicting the noise of conventional passenger cars is presented considering the acoustic source strength in octave-band frequencies and the propagation over grounds with varying surface properties. Since the formation of a train can be variable, the source strength of each locomotive and passenger car was estimated by measuring the pass-by noise and analysing the wheel-rail rolling noise. Some validation cases show on the average small differences between the predictions of the present model and the measurement results.

  • PDF