• Title/Summary/Keyword: strength of matrix

Search Result 1,758, Processing Time 0.026 seconds

Fracture Behavior of Reinforced Concrete Beams Repaired by Latex-Modified Concrete (LMC로 보강된 철근콘크리트 보의 파괴거동)

  • 김성환;정원경;김기헌;김동호;윤경구
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.475-480
    • /
    • 2003
  • Latex modification of concrete provides the material with higher flexural strength. This increase in flexural strength can attribute to the crack-arresting action of polymer in concrete, and also to the bonding they provide between the matrix and aggregates. This experimental study presents the fracture behavior of 12 flexural reinforced concrete beams repaired or strengthened by latex-modified concrete with the main experimental variables such as overlay thickness, strength thickness, and shear reinforcement. The results are as follow: All beam specimens having shear reinforcement were failed by delamination rupture at concrete interface at about 80% of ultimate loading after flexural cracking. All specimens overlayed and strengthened by latex-modified concrete (LMC) showed higher ultimate flexural strength than OPC control specimen, but lower than LMC control specimen. This increase in flexural strength could attribute to the high bonding they provide between the matrix and aggregates. All specimens except two shear unreinforced showed quite similar and consistent displacement behavior. The effect of overlay and strength thickness on the load-displacement relationship were a small at this study.

  • PDF

Synthesis and Characterization of Graphene Based Unsaturated Polyester Resin Composites

  • Swain, Sarojini
    • Transactions on Electrical and Electronic Materials
    • /
    • v.14 no.2
    • /
    • pp.53-58
    • /
    • 2013
  • Graphene-based polymer nanocomposites are very promising candidates for new high-performance materials that offer improved mechanical, barrier, thermal and electrical properties. Herein, an approach is presented to improve the mechanical, thermal and electrical properties of unsaturated polyester resin (UPR) by using graphene nano sheets (GNS). The extent of dispersion of GNS into the polymer matrix was also observed by using the scanning electron microscopy (SEM) which indicated homogeneous dispersion of GNS through the UPR matrix and strong interfacial adhesion between the GNS and UPR matrix were achieved in the UPR composite, which enhanced the mechanical properties. The tensile strength of the nanocomposites improved at a tune of 52% at a GNS concentration of 0.05%. Again the flexural strength also increased around 92% at a GNS concentration of 0.05%. Similarly the thermal properties and the electrical properties for the nanocomposites were also improved as evidenced from the differential scanning caloriemetry (DSC) and dielectric strength measurement.

Flexural strength of roller compacted concrete pavements reinforced with glass-roved textiles

  • Madhkhan, Morteza;Nowroozi, Saeid;Torki, Mohammad E.
    • Structural Engineering and Mechanics
    • /
    • v.55 no.1
    • /
    • pp.137-160
    • /
    • 2015
  • The one-way (two-way) flexural strength of RCC prisms (circular slabs) reinforced with glass fiber textiles is addressed. To this end, alkaline-resistant glass fiber textiles with three surface weights were used in the composite, the matrix concrete was designed with zero/nonzero slump, and the textiles were used with/without an intermediate layer provided by epoxy resin and sand mortar. Prisms were tested under a four-point loading apparatus and circular slabs were placed on simple supports under a central load. Effects of the amount and geometry of reinforcement, matrix workability, and the intermediate layer on the ultimate load and deflection were investigated. Results revealed that, with a specific reinforcement amount, there is an optimum textile tex for each case, depending on the matrix mix design and the presence of intermediate layer. Similar results were obtained in one-way and two-way bending tests.

A study on characteristic adgesive condition at microscopic interfaces and notch shape strength of GFRP composites laminates under low-hot-wet environment (저온.고온고습 환경시험에 의한 GFRP의 미시계면 접착상태 및 노치형상강도 특성에 관한 연구)

  • 김옥만;박귀성;한길영;이동기;김이곤
    • Journal of Ocean Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.58-66
    • /
    • 1996
  • The purpose of this investigation is to estimate the strength with the variations of the notch shape and the adgesive condition at the fiber/matrix micro interface of E-glass/PP laminates. To promote the degradation of the adhesive condition at the fiber/matrix micro interface without matrix dissolution loss, low-, hot-wet and spiking tests were carried out. The absorpotion properties and the tensile properties were compared accrding to the fiber orientation and the content. The results show that, firstly, saturated moisture absorption was reached at 5cycles and their absorptions of RD-40, UD-42 and UD-50 are 0.68%, 0.63%, 0.60%, respectively. Secondly, all the specimens investigated were mostly degraded at 5cycle, whereas UD-50 having ellipse shaped notch the least decrement of strength.

  • PDF

Effect of Fe Magnetic Nanoparticles in Rubber Matrix

  • Uhm, Young-Rang;Kim, Jae-Woo;Jun, Ji-Heon;Lee, Sol;Rhee, Chang-Kyu;Kim, Chul-Sung
    • Journal of Magnetics
    • /
    • v.15 no.4
    • /
    • pp.173-178
    • /
    • 2010
  • A new kind of magnetic rubber, Fe dispersed ethylene propylene monomer (EPM), was prepared by a conventional technique using a two roll mill. The magnetic fillers of Fe-nanoparicles were coated by low density polyethylene (LDPE). The purpose of surface treatment of nanoparticles by LDPE is to enhance wettability and lubricancy of the fillers in a polymer matrix. The mechanical strength and microstructure of the magnetic rubber were characterized by tensile strength test and scanning electron microscopy (SEM). Results revealed that the Fe nanoparticles were relatively well dispersed in an EPM matrix. It was found that the nano- Fe dispersed magnetic rubber showed higher coercivity and tensile strength than those of micron- Fe dispersed one.

Electrical Discharge Machining of Alumina Ceramic Matrix Composites Containing Electro-conductive Titanium Carbide as a Second Phase (도전성 탄화티타늄 이차상을 포함하는 산화알루니늄기 세라믹 복합체의 방전가공)

  • 윤존도;왕덕현;안영철;고철호
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.10
    • /
    • pp.1092-1098
    • /
    • 1997
  • Electrical discharge machining (EDM) was attempted on a ceramic matrix composite containing non-conductive alumina as a matrix and conductive titania as a second phase, and was found successful. As the current or duty factor increased, the material removal rate (MRR) increased and the surface roughness also increased. The EDMed surface was covered with a number of craters of a circular shape having 100-200 microns of diameter. The melting and evaporation was suggested for the EDM mechanism. The bending strength decreased 44% after EDM, but the Weibull modulus increased more than twice. Combination of EDM and barre이 polishing resulted in the maintenance of the bending strength level. Temperature distribution near a spark in the sample was computer-simulated by use of finite element method, and was found to have similar shape to the one which the observed craters have.

  • PDF

Role of class-C fly Ash in the Development of Strength & Microstructure of Fly Ash-GGBS Geopolymer

  • Sasui, Sasui;Kim, Gyu Yong;Lee, Sang Kyu;Son, Min jae;Hwang, Eui Chul;Nam, Jeong Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.06a
    • /
    • pp.79-80
    • /
    • 2020
  • The class-C fly ash (FA) and ground granulated blast-furnace slag (GGBS) based geopolymer activated in NaOH (4M) was studied regarding compressive strength, porosity, microstructure and formation of crystalline phases. The class-C FA and GGBS blends resulted in reduced strength and increased porosity of the matrix with the increase in FA content. The unreactivity of calcium in blends was observed with increasing FA content leading to strength loss. it is evident from XRD patterns that calcium in FA did not contribute in forming CSH bond, but formation of crystalline calcite was observed. Furthermore, XRD analyses revealed that reduction in FA leads to the reduction in crystallinity and SEM micrographs showed the unreactive FA particles which hinder the formation of denser matrix.

  • PDF

The Effect or Resin ann ruler Type on the compressive strength of Light-activated Composite Resins (광중합형 복합레진의 압축강도에 미치는 레진과 필러의 영향)

  • 원대희
    • Journal of Biomedical Engineering Research
    • /
    • v.18 no.1
    • /
    • pp.1-8
    • /
    • 1997
  • This study was performed to evaluate the effect of resin and filler type on the compressive strength of light-activated composite resins. Experimental composite resins containing either amorphous spherical silica or crushed quartz in two matrix resins of BisGMA/TEGDMA and UTMA/TEGDMA were prepared and the specimens of 3 m in diameter and 6m in length were made. Compressive test was subjected to a crosshead speed of 0.5 mm/min, and the fracture surFaces were examined by SEM. The compressive strength of UTMA-based composite resin was higher than that of BisGMA-based composite resin. The loading rate of spherical silica was higher than that of crushed silica when the size dis- tribution of fillers was same. Strength decrease of Bis-GMA-based composite resin was severer than that of UTMA-based composite resin in a $37^{\circ}$c water environment. Fracture surface showed that the composite resin failure developed along the matrix resin and the filler/resin interface region.

  • PDF

Enhancing Dermal Matrix Regeneration and Biomechanical Properties of $2^{nd}$ Degree-Burn Wounds by EGF-Impregnated Collagen Sponge Dressing

  • Cho Lee Ae-Ri
    • Archives of Pharmacal Research
    • /
    • v.28 no.11
    • /
    • pp.1311-1316
    • /
    • 2005
  • To better define the relationship between dermal regeneration and wound contraction and scar formation, the effects of epidermal growth factor (EGF) loaded in collagen sponge matrix on the fibroblast cell proliferation rate and the dermal mechanical strength were investigated. Collagen sponges with acid-soluble fraction of pig skin were prepared and incorporated with EGF at 0, 4, and 8 $\mu$g/1.7 $cm^{2}$. Dermal fibroblasts were cultured to 80$\%$ confluence using DMEM, treated with the samples submerged, and the cell viability was estimated using MTT assay. A deep, $2^{nd}$ degree- burn of diameter 1 cm was prepared on the rabbit ear and the tested dressings were applied twice during the 15-day, post burn period. The processes of re-epithelialization and dermal regeneration were investigated until the complete wound closure day and histological analysis was performed with H-E staining. EGF increased the fibroblast cell proliferation rate. The histology showed well developed, weave-like collagen bundles and fibroblasts in EGF-treated wounds while open wounds showed irregular collagen bundles and impaired fibroblast growth. The breaking strength (944.1 $\pm$ 35.6 vs. 411.5 $\pm$ 57.0 Fmax, $gmm^{-2}$) and skin resilience (11.3 $\pm$ 1.4 vs. 6.5 $\pm$ 0.6 mJ/$mm^{2}$) were significantly increased with EGF­treated wounds as compared with open wounds, suggesting that EGF enhanced the dermal matrix formation and improved the wound mechanical strength. In conclusion, EGF-improved dermal matrix formation is related with a lower wound contraction rate. The impaired dermal regeneration observed in the open wounds could contribute to the formation of wound contraction and scar tissue development. An extraneous supply of EGF in the collagen dressing on deep, $2^{nd}$ degree-burns enhanced the dermal matrix formation.

Evaluation on the Mechanical Performance of Low-Quality Recycled Aggregate Through Interface Enhancement Between Cement Matrix and Coarse Aggregate by Surface Modification Technology

  • Choi, Heesup;Choi, Hyeonggil;Lim, Myungkwan;Inoue, Masumi;Kitagaki, Ryoma;Noguchi, Takafumi
    • International Journal of Concrete Structures and Materials
    • /
    • v.10 no.1
    • /
    • pp.87-97
    • /
    • 2016
  • In this study, a quantitative review was performed on the mechanical performance, permeation resistance of concrete, and durability of surface-modified coarse aggregates (SMCA) produced using low-quality recycled coarse aggregates, the surface of which was modified using a fine inorganic powder. The shear bond strength was first measured experimentally and the interface between the SMCA and the cement matrix was observed with field-emission scanning electron microscopy. The results showed that a reinforcement of the interfacial transition zone (ITZ), a weak part of the concrete, by coating the surface of the original coarse aggregate with surface-modification material, can help suppress the occurrence of microcracks and improve the mechanical performance of the aggregate. Also, the use of low-quality recycled coarse aggregates, the surfaces of which were modified using inorganic materials, resulted in improved strength, permeability, and durability of concrete. These results are thought to be due to the enhanced adhesion between the recycled coarse aggregates and the cement matrix, which resulted from the improved ITZ in the interface between a coarse aggregate and the cement matrix.