Browse > Article
http://dx.doi.org/10.4283/JMAG.2010.15.4.173

Effect of Fe Magnetic Nanoparticles in Rubber Matrix  

Uhm, Young-Rang (Nuclear Materials Research Division, Korea Atomic Energy Research Institute (KAERI))
Kim, Jae-Woo (Nuclear Materials Research Division, Korea Atomic Energy Research Institute (KAERI))
Jun, Ji-Heon (Nuclear Materials Research Division, Korea Atomic Energy Research Institute (KAERI))
Lee, Sol (Nuclear Materials Research Division, Korea Atomic Energy Research Institute (KAERI))
Rhee, Chang-Kyu (Nuclear Materials Research Division, Korea Atomic Energy Research Institute (KAERI))
Kim, Chul-Sung (Nano-electro Physics, Kookmin University)
Publication Information
Abstract
A new kind of magnetic rubber, Fe dispersed ethylene propylene monomer (EPM), was prepared by a conventional technique using a two roll mill. The magnetic fillers of Fe-nanoparicles were coated by low density polyethylene (LDPE). The purpose of surface treatment of nanoparticles by LDPE is to enhance wettability and lubricancy of the fillers in a polymer matrix. The mechanical strength and microstructure of the magnetic rubber were characterized by tensile strength test and scanning electron microscopy (SEM). Results revealed that the Fe nanoparticles were relatively well dispersed in an EPM matrix. It was found that the nano- Fe dispersed magnetic rubber showed higher coercivity and tensile strength than those of micron- Fe dispersed one.
Keywords
magnetic rubber; ethylene propylene monomer (EPM); nanocomposite;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 0  (Related Records In Web of Science)
Times Cited By SCOPUS : 0
연도 인용수 순위
1 E. Muhammad Abdul Jamal, P. A. Joy, P. Kurian, and M. R. Anantharaman, Mater. Sci. Eng. B 156, 24 (2009).   DOI   ScienceOn
2 M. Li, Z. He, H. M. Zheng, and N. Zhang, Acta Mech. Solida Sin. 21, 247 (2008).   DOI   ScienceOn
3 Y. Sun, X. Zhou, Y. Liu, G. Zhao, and Y. Jiang, Mater. Res. Bull. 45, 878 (2010).   DOI   ScienceOn
4 L. Mattias, R. torjorn, and S. Bent, Polym. Degrad. Stabil. 86, 467 (2004).   DOI   ScienceOn
5 K. A. Malini, P. Kurian, and M. R. Anatharamana, Mater. Lett. 57, 3381 (2003).   DOI   ScienceOn
6 Tao Jiang, Zhihao Jin, Jianfeng Yang, and Guangun Qiao, J. Mater. Process. Tech. 209, 561 (2009).   DOI   ScienceOn
7 K. Niihara, Ceram. Soc. Jpn. 99, 974 (1991).   DOI
8 J. H. Kim, H. J. Oh, N. H. Lee, C. R. Yoon, and S. J. Kim, J. Kor. Phys. Soc. 48, 1329 (2006).
9 N. Kaya, Nucl. Insr. Meth. B 261, 711 (2007).   DOI   ScienceOn
10 J. A. Reyes-Labarta, Polymer 47, 8194 (2006).   DOI   ScienceOn
11 H. M. Lee, Y. R. Uhm, and C. K. Rhee, J. Alloy. Comp. 461, 604 (2008).   DOI   ScienceOn
12 Y. R. Uhm, J. Kim, J. Jung, and C. K. Rhee, Modern Phys. Lett. B 23, 3931 (2009).   DOI   ScienceOn
13 J. Jung, J. Kim, Y. R. Uhm, J.-K. Jeon, S. Lee, H. M. Lee, and C. K. Rhee, Thermochimica Acta 499, 8 (2010).   DOI   ScienceOn
14 B. S. Han, C. K. Rhee, M. K. Lee, and Y. R. Uhm, IEEE Trans. Magn. 42, 4779 (2006).
15 D. L. Leslie-Pelecky, and R. D. Rieke, Chem. Mater. 8, 1770 (1996).   DOI   ScienceOn