• Title/Summary/Keyword: strength of matrix

Search Result 1,756, Processing Time 0.031 seconds

Tensile Properties of Hybrid Fiber Reinforced Cement Composite according to the Hooked & Smooth Steel Fiber Blending Ratio and Strain Rate (후크형 및 스무스형 강섬유의 혼합 비율과 변형속도에 따른 하이브리드 섬유보강 시멘트복합체의 인장특성)

  • Son, Min-Jae;Kim, Gyu-Yong;Lee, Sang-Kyu;Kim, Hong-Seop;Nam, Jeong-Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.3
    • /
    • pp.31-39
    • /
    • 2021
  • In this study, the fiber blending ratio and strain rate effect on the tensile properties synergy effect of hybrid fiber reinforced cement composite was evaluated. Hooked steel fiber(HSF) and smooth steel fiber(SSF) were used for reinforcing fiber. The fiber blending ratio of HSF+SSF were 1.5+0.5, 1.0+1.0 and 0.5+1.5vol.%. As a results, in the cement composite(HSF2.0) reinforced with HSF, as the strain rate increases, the tensile stress sharply decreased after the peak stress because of the decrease in the number of straightened pull-out fibers by increase of micro cracks in the matrix around HSF. When 0.5 vol.% of SSF was mixed, the micro cracks was effectively controlled at the static rate, but it was not effective in controlling micro cracks and improving the pull-out resistance of HSF at the high rate. On the other hand, the specimen(HSF1.0SSF1.0) in which 1.0vol.% HSF and 1.0vol.% SSF were mixed, each fibers controls against micro and macro cracks, and SSF improves the pull-out resistance of HSF effectively. Thus, the fiber blending effect of the strain capacity and energy absorption capacity was significantly increased at the high rate, and it showed the highest dynamic increase factor of the tensile strength, strain capacity and peak toughness. On the other hand, the incorporation of 1.5 vol.% SSF increases the number of fibers in the matrix and improves the pull-out resistance of HSF, resulting in the highest fiber blending effect of tensile strength and softening toughness. But as a low volume fraction of HSF which controlling macro crack, it was not effective for synergy of strain capacity and peak toughness.

Effect of Cardanol Content on the Antibacterial Films Derived from Alginate-PVA Blended Matrix (알지네이트-폴리비닐알콜 블랜드 항균 필름 제조를 위한 카다놀 함량의 영향)

  • Ahn, Hee Ju;Kang, Kyung Soo;Song, Yun Ha;Lee, Da Hae;Kim, Mun Ho;Lee, Jae Kyoung;Woo, Hee Chul
    • Clean Technology
    • /
    • v.28 no.1
    • /
    • pp.24-31
    • /
    • 2022
  • Petroleum-based plastics are used for various purposes and pose a significant threat to the earth's environment and ecosystem. Many efforts have been taken globally in different areas to find alternatives. As part of these efforts, this study manufactured alginate-based polyvinyl alcohol (PVA) blended films by casting from an aqueous solution prepared by mixing 10 wt% petroleum-based PVA with biodegradable, marine biomass-derived alginate. Glutaraldehyde was used as a cross-linking agent, and cardanol, an alkyl phenol-based bio-oil extracted from cashew nut shell, was added in the range of 0.1 to 2.0 wt% to grant antibacterial activity to the films. FTIR and TGA were performed to characterize the manufactured blended films, and the tensile strength, degree of swelling, and antibacterial activity were measured. Results obtained from the FTIR, TGA, and tensile strength test showed that alginate, the main component, was well distributed in the PVA by forming a matrix phase. The brittleness of alginate, a known weakness as a single component, and the low thermal durability of PVA were improved by cross-linking and hydrogen bonding of the functional groups between alginate and PVA. Addition of cardanol to the alginate-based PVA blend significantly improved the antibacterial activity against S. aureus and E. coli. The antibacterial performance was excellent with a death rate of 98% or higher for S. aureus and about 70% for E. coli at a contact time of 60 minutes. The optimal antibacterial activity of the alginate-PVA blended films was found with a cardanol content range between 0.1 to 0.5 wt%. These results show that cardanol-containing alginate-PVA blended films are suitable for use as various antibacterial materials, including as food packaging.

Blend Characteristics of PBT, Nylon6,12 and Preparation of PBT/Nylon6,12 Micro Fiber with Core/shell Structure and their Extrusion Conditions (PBT와 Nylon6,12의 블렌드 특성과 core/shell 구조를 갖는 PBT/Nylon6,12 미세모의 제조 및 압출조건)

  • Park, Hui-Man;Lee, Seon-Ho;Kwak, Noh-Seok;Hwang, Chi Won;Park, Sung-Gyu;Hwang, Taek Sung
    • Korean Chemical Engineering Research
    • /
    • v.50 no.6
    • /
    • pp.1068-1075
    • /
    • 2012
  • Poly(butylene terephthalate) (PBT)/Nylon6,12 core/shell micro fiber were prepared by extrusion molding. To investigate their optimum extrusion conditions, compatibility of PBT/Nylon6,12 blend micro fiber in conformity to their weight ratio and manufacture temperature was explored with SEM morphology and DSC. The alterations in their mechanical properties by extrusion speed were compared and analyzed through a UTM. In comparison with SEM figures, the domain sizes of Nylon6,12 were gradually declined by increasing the extrusion temperature of blends. Furthermore, according to these SEM images, the phase separation between Nylon6,12 domain and PBT matrix became indistinct with increasing of weight percentage of Nylon6,12. In case of DSC, the boundaries of two peaks were almost disappeared when increasing the extrusion temperature and also intervals of each two melting peaks became narrow as increasing the Nylon6,12 ratio. The mechanical properties including tensile strength, elongation, flexural strength and flexural modulus were increased as the increase in the extrusion temperature until $260^{\circ}C$. However, the mechanical properties were actually deteriorated over $260^{\circ}C$. The tensile strength, elongation, flexural strength and flexural modulus at $260^{\circ}C$ were 560 $kg_f/cm^2$, 220%, 807 $kg_f/cm^2$ and 22,146 $kg_f/cm^2$, respectively. These values are more than intermediate values of mechanical properties of PBT and Nylon6,12. These results mean that there is compatibility between PBT and Nylon6,12. Based on the extrusion conditions that produced optimum compatibility of blend, as a result, our group obtained micro fibers with the core/shell structure.

Nondestructive Evaluation and Microfailure Mechanisms of Single Fibers/Brittle Cement Matrix Composites using Electro-Micromechanical Technique and Acoustic Emission (Electro-Micromechanical 시험법과 Acoustic Emission을 이용한 단섬유/시멘트 복합재료의 미세파괴 메커니즘과 비파괴적 평가)

  • 박종만;이상일;김진원;윤동진
    • Composites Research
    • /
    • v.14 no.3
    • /
    • pp.18-31
    • /
    • 2001
  • Interfacial and microfailure properties of the modified steel, carbon and glass fibers/cement composites were investigated using electro-pullout test under tensile and compressive tests with acoustic emission (AE). The hand-sanded steel composite exhibited higher interfacial shear strength (IFSS) than the untreated and even neoalkoxy zirconate (Zr) treated steel fiber composites. This might be due to the enhanced mechanical interlocking, compared to possible hydrogen or covalent bonds. During curing process, the contact resistivity decreased rapidly at the initial stage and then showed a level-off. Comparing to the untreated case, the contact resistivity of either Zr-treated or hand-sanded steel fiber composites increased to the infinity at latter stage. The number of AE signals of hand-sanded steel fiber composite was much more than those of the untreated and Zr-treated cases due to many interlayer failure signals. AE waveforms for pullout and frictional signals of the hand-sanded composite are larger than those of the untreated case. For dual matrix composite (DMC), AE energy and waveform under compressive loading were much higher and larger than those under tensile loading, due to brittle but well-enduring ceramic nature against compressive stress. Vertical multicrack exhibits fur glass fiber composite under tensile test, whereas buckling failure appeared under compressive loading. Electro-micromechanical technique with AE can be used as an efficient nondestructive (NDT) method to evaluate the interfacial and microfailure mechanisms for conductive fibers/brittle and nontransparent cement composites.

  • PDF

Early Changes after Death of Plaice, Paralichthys olivaceus Muscle -6. Effect of Killing Methods on Morphological Changes of Myofibrills and Histological Changes of Muscle- (넙치 (Paralichthys olivaceus)육의 사후조기변화 -6. 치사 방법이 근원섬유의 형태학적 및 육의 조직학적인 변화에 미치는 영향-)

  • CHO Young-Je;LEE Nam-Geoul;KIM Yuck-Yong;KIM Jae-Hyun;LEE Keun-Woo;KIM Geon-Bae;CHOI Young-Joon
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.27 no.4
    • /
    • pp.327-334
    • /
    • 1994
  • This study was undertaken to clarify the effect of killing methods on the morphological and histological changes of plaice, Paralichthys olivaceus muscle at early stage after killing. Killed samples by the three different methods were stored at $5^{\circ}$, and the changes in breaking strength of muscle, morphological observation of myofibrils and histological observation of extracellular spaces through storage were monitored. Samples killed by electrifying in sea water showed the maximum value of breakin strength immediately after killing and then it dropped significantly(p<0.05) until 2.5hrs passed. Breaking strength of samples killed by spiking at the head instantly and dipping in sea water including anesthetic rose steadily over 10hrs and 15hrs after killing, respectively. In myofibrills prepared from dorsal muscles immediately after spiking at the head instantly, A-band, H-band, I-band, and Z-line in sarcomere were clearly distinguishable each other. Due to muscle contraction by electrical stimulation, it was impossible to distinguish H-band from I-band observed in sarcomere immediately after killing for samples killed by electrifying. But, in the cases of samples killed by spiking and dipping, H-band could be observed dimly until 10hrs and 15hrs storage. No extracellular space was observed among muscle cells immediately after spiking at the head instantly. Samples killed by spiking at the head instantly and dipping in sea water including anesthetic showed extracellular spaces among all muscle cells after 15hrs and 25hrs storage, respectively. The other hand, samples killed by electrifying in sea water (110V, 30sec.) showed a few extracellular spaces immediately after killing and then it showed extracellular spaces among all muscle cells after 2.5hrs storage.

  • PDF

The Development of an Electroconductive SiC-ZrB2 Composite through Spark Plasma Sintering under Argon Atmosphere

  • Lee, Jung-Hoon;Ju, Jin-Young;Kim, Cheol-Ho;Park, Jin-Hyoung;Lee, Hee-Seung;Shin, Yong-Deok
    • Journal of Electrical Engineering and Technology
    • /
    • v.5 no.2
    • /
    • pp.342-351
    • /
    • 2010
  • The SiC-$ZrB_2$ composites were fabricated by combining 30, 35, 40, 45 and 50 vol. % of zirconium diboride ($ZrB_2$) powders with silicon carbide (SiC) matrix. The SiC-$ZrB_2$ composites and the sintered compacts were produced through spark plasma sintering (SPS) under argon atmosphere, and its physical, electrical, and mechanical properties were examined. Also, the thermal image analysis of the SiC-$ZrB_2$ composites was examined. Reactions between $\beta$-SiC and $ZrB_2$ were not observed via x-ray diffraction (XRD) analysis. The apparent porosity of the SiC+30vol.%$ZrB_2$, SiC+35vol.%$ZrB_2$, SiC+40vol.%$ZrB_2$, SiC+45vol.%$ZrB_2$ and SiC+50vol.%$ZrB_2$ composites were 7.2546, 0.8920, 0.6038, 1.0981, and 10.0108%, respectively. The XRD phase analysis of the sintered compacts demonstrated a high phase of SiC and $ZrB_2$. Among the $SiC+ZrB_2$ composites, the SiC+50vol.%$ZrB_2$ composite had the lowest flexural strength, 290.54MPa, the other composites had more than 980MPa flexural strength except the SiC+30vol.%$ZrB_2$ composite; the SiC+40vol.%$ZrB_2$ composite had the highest flexural strength, 1011.34MPa, at room temperature. The electrical properties of the SiC-$ZrB_2$ composites had positive temperature coefficient resistance (PTCR). The V-I characteristics of the SiC-$ZrB_2$ composites had a linear shape in the temperature range from room to $500^{\circ}C$. The electrical resistivities of the SiC+30vol.%$ZrB_2$, SiC+35vol.%$ZrB_2$, SiC+40vol.%$ZrB_2$ SiC+45vol.%$ZrB_2$ and SiC+50vol.%$ZrB_2$ composites were $4.573\times10^{-3}$, $1.554\times10^{-3}$, $9.365\times10^{-4}$, $6.999\times10^{-4}$, and $6.069\times10^{-4}\Omega{\cdot}cm$, respectively, at room temperature, and their resistance temperature coefficients were $1.896\times10^{-3}$, $3.064\times10^{-3}$, $3.169\times10^{-3}$, $3.097\times10^{-3}$, and $3.418\times10^{-3}/^{\circ}C$ in the temperature range from room to $500^{\circ}C$, respectively. Therefore, it is considered that among the sintered compacts the SiC+35vol.%$ZrB_2$, SiC+40vol.%$ZrB_2$ and SiC+45vol.%$ZrB_2$ composites containing the most outstanding mechanical properties as well as PTCR and V-I characteristics can be used as an energy friendly ceramic heater or ohmic-contact electrode material through SPS.

A novel approach for rice straw agricultural waste utilization: Synthesis of solid aluminosilicate matrices for cesium immobilization

  • Panasenko, A.E.;Shichalin, O.O.;Yarusova, S.B.;Ivanets, A.I.;Belov, A.A.;Dran'kov, A.N.;Azon, S.A.;Fedorets, A.N.;Buravlev, I. Yu;Mayorov, V. Yu;Shlyk, D. Kh;Buravleva, A.A.;Merkulov, E.B.;Zarubina, N.V.;Papynov, E.K.
    • Nuclear Engineering and Technology
    • /
    • v.54 no.9
    • /
    • pp.3250-3259
    • /
    • 2022
  • A new approach to the use of rice straw as a difficult-to-recycle agricultural waste was proposed. Potassium aluminosilicate was obtained by spark plasma sintering as an effective material for subsequent immobilization of 137Cs into a solid-state matrix. The sorption properties of potassium aluminosilicate to 137Cs from aqueous solutions were studied. The effect of the synthesis temperature on the phase composition, microstructure, and rate of cesium leaching from samples obtained at 800-1000 ℃ and a pressure of 25 MPa was investigated. It was shown that the positive dynamics of compaction was characteristic of glass ceramics throughout the sintering. Glass ceramics RS-(K,Cs)AlSi3O8 obtained by the SPS method at 1000 ℃ for 5 min was characterized by a high density of ~2.62 g/cm3, Vickers hardness ~ 2.1 GPa, compressive strength ~231.3 MPa and the rate of cesium ions leaching of ~1.37 × 10-7 g cm-2·day-1. The proposed approach makes it possible to safe dispose of rice straw and reduce emissions into the atmosphere of microdisperse amorphous silica, which is formed during its combustion and causes respiratory diseases, including cancer. In addition, the obtained is perspective to solve the problem of recycling long-lived 137Cs radionuclides formed during the operation of nuclear power plants into solid-state matrices.

Effects of SPS Mold on the Properties of Sintered and Simulated SiC-ZrB2 Composites

  • Lee, Jung-Hoon;Kim, In-Yong;Kang, Myeong-Kyun;Jeon, Jun-Soo;Lee, Seung-Hoon;Jeon, An-Gyun;Shin, Yong-Deok
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.6
    • /
    • pp.1474-1480
    • /
    • 2013
  • Silicon carbide (SiC)-zirconium diboride ($ZrB_2$) composites were prepared by subjecting a 60:40 vol% mixture of ${\beta}$-SiC powder and $ZrB_2$ matrix to spark plasma sintering (SPS) in 15 $mm{\Phi}$ and 20 $mm{\Phi}$ molds. The 15 $mm{\Phi}$ and 20 $mm{\Phi}$ compacts were sintered for 60 sec at $1500^{\circ}C$ under a uniaxial pressure of 50 MPa and argon atmosphere. Similar composites were simulated using $Flux^{(R)}$ 3D computer simulation software. The current and power densities of the specimen sections of the simulated SiC-$ZrB_2$ composites were higher than those of the mold sections of the 15 $mm{\Phi}$ and 20 $mm{\Phi}$ mold simulated specimens. Toward the centers of the specimen sections, the current densities in the simulated SiC-$ZrB_2$ composites increased. The power density patterns of the specimen sections of the simulated SiC-$ZrB_2$ composites were nearly identical to their current density patterns. The current densities of the 15 $mm{\Phi}$ mold of the simulated SiC-$ZrB_2$ composites were higher than those of the 20 $mm{\Phi}$ mold in the center of the specimen section. The volume electrical resistivity of the simulated SiC-$ZrB_2$ composite was about 7.72 times lower than those of the graphite mold and the punch section. The power density, 1.4604 $GW/m^3$, of the 15 $mm{\Phi}$ mold of the simulated SiC-$ZrB_2$ composite was higher than that of the 20 $mm{\Phi}$ mold, 1.3832 $GW/m^3$. The $ZrB_2$ distributions in the 20 $mm{\Phi}$ mold in the sintered SiC-$ZrB_2$ composites were more uniform than those of the 15 $mm{\Phi}$ mold on the basis of energy-dispersive spectroscopy (EDS) mapping. The volume electrical resistivity of the 20 $mm{\Phi}$ mold of the sintered SiC-$ZrB_2$ composite, $6.17{\times}10^{-4}{\Omega}cm$, was lower than that of the 15 $mm{\Phi}$ mold, $9.37{\times}10^{-4}{\Omega}{\cdot}cm$, at room temperature.

Effects of Intramedullary Vascularized Muscle Flap in Regeneration of Lyophilized, Autografted Humeral Head in Rabbits (골수강내 혈관성 근피판 이식이 동결 건조후 자가 이식된 관절연골의 재생에 미치는 효과)

  • Rhee, Seung-Koo;Kim, Sung-Tae;Park, Jin-Il
    • Archives of Reconstructive Microsurgery
    • /
    • v.9 no.2
    • /
    • pp.139-146
    • /
    • 2000
  • The aim of this study was to assess whether the functional regeneration of a lyophilized autografted cartilage could be improved by implanting a vascularized muscle flap into the medullary canal of autografted proximal humerus. A hemijoint reconstruction using a lyophilized osteochondral autograft in proximal humerus was done in 4 rabbits for control, and combined with an vascularized intramedullary muscle flap in another 4 rabbits for the experimental group. Graft healing and the repair process of osteochondral graft were followed by serial radiographs and histologic changes for 9 weeks after experiments. Each two rabbits in control and in experimental group on 5th and 9th week after implantation of hemijoint were sacrified. The results were as follows: 1. All of control and experimental froups on 5th week united solidly on osteotomized site radiologically, but their articular cartilages were destroyed more seriously in the control than that in experimental group with muscle flap on 5th and 9th week after experiment... 2. Histochemically, the cartilage surface are completely destroyed and revealed with severe osteoarthritic changes on all cartilage layers in control, but cartilaginous erosions are mild to moderate and their arthritic changes are also mild with somewhat regeneration of chondrocytes on deep layers more prominetly on 9th week of the experimental group. 3. The amount of collagen and protenized matrix which was determined by Masson-Trichrome stain was markedly decreased that means the weakness of bony strength and low osteogenic potential in lyophilized cartilage. These results suggest that an intramedullary vascularized muscle flap can improve the functional results of lyophilized osteochondral autograft by providing both increased vascularity and populations of mesenchymal cells to initiate new bone formation on osteotomized site as well as the regeneration of deep layers in articular cartilage. In clinical relevances, this lyophilized hemijoint autograft combined with an intramedullary vascularized muscle pedicle graft might be used very effectively for the treatment of malignant long bone tumors to preserve the joint functions, all or partly, and so to replace it with the artificial joint after tumor excision and hemijoint autograft.

  • PDF

Effects of using silica fume and lime in the treatment of kaolin soft clay

  • Alrubaye, Ali Jamal;Hasan, Muzamir;Fattah, Mohammed Y.
    • Geomechanics and Engineering
    • /
    • v.14 no.3
    • /
    • pp.247-255
    • /
    • 2018
  • Soil stabilization can make the soils becoming more stable by using an admixture to the soil. Lime stabilization enhances the engineering properties of soil, which includes reducing soil plasticity, increasing optimum moisture content, decreasing maximum dry density and improving soil compaction. Silica fume is utilized as a pozzolanic material in the application of soil stabilization. Silica fume was once considered non-environmental friendly. In this paper, the materials required are kaolin grade S300, lime and silica fume. The focus of the study is on the determination of the physical properties of the soils tested and the consolidation of kaolin mixed with 6% silica fume and different percentages (3%, 5%, 7% and 9%) of lime. Consolidation test is carried out on the kaolin and the mixtures of soil-lime-silica fume to investigate the effect of lime stabilization with silica fume additives on the consolidation of the mixtures. Based on the results obtained, all soil samples are indicated as soils with medium plasticity. For mixtures with 0% to 9% of lime with 6% SF, the decrease in the maximum dry density is about 15.9% and the increase in the optimum moisture content is about 23.5%. Decreases in the coefficient of permeability of the mixtures occur if compared to the coefficient of permeability of kaolin soft clay itself reduce the compression index (Cc) more than L-SF soil mix due to pozzolanic reaction between lime and silica fume and the optimum percent of lime-silica fume was found to be (5%+6%) mix. The average coefficient of volume compressibility decreases with increasing the stabilizer content due to pozzolanic reaction happening within the soil which results in changes in the soil matrix. Lime content +6% silica fume mix can reduce the coefficient of consolidation from at 3%L+6%SF, thereafter there is an increase from 9%L+6%SF mix. The optimal percentage of lime silica fume combination is attained at 5.0% lime and 6.0% silica fume in order to improve the shear strength of kaolin soft clay. Microstructural development took place in the stabilized soil due to increase in lime content of tertiary clay stabilized with 7% lime and 4% silica fume together.