• 제목/요약/키워드: strength loss

검색결과 1,490건 처리시간 0.026초

자동차 브레이크 패드의 기계적 특성 연구 (Mechanical Characteristics of Automobile Brake Pads)

  • 신재호;김경진;강우종
    • 자동차안전학회지
    • /
    • 제7권3호
    • /
    • pp.19-24
    • /
    • 2015
  • Brake pads are a component of disc brake system of automobile and consist of steel backing plates and friction material facing the disk brake rotor. Due to the repeated sliding forces and torque in vehicle braking, friction performance of brake pads are ensured. Futhermore, the brake pad is one of major tuning components in aftermarket, mechanical characteristics of the brake pad are necessary to evaluate for establishing the certification standards of tuning components. This study had performed the five specimen tests for friction coefficients and wear loss rates according to the SAE test specification. Using the instrumented indentation method, yield strength and tensile strength were measured. Friction coefficients, 0.386 - 0.489, and wear loss rates, 1.0% - 3.7% are obtained. The range of yield strength and tensile strength are 21.4 MPa - 105.3 MPa and 39.5 MPa - 176.4 MPa respectively.

고강도 저손실 가공송전선의 개발(II) - 전기적 특성 (Development of High Strength and Low Loss Overhead Conductor(II) - Electric Properties)

  • 김병걸;김상수;박주환
    • 한국전기전자재료학회논문지
    • /
    • 제18권12호
    • /
    • pp.1159-1165
    • /
    • 2005
  • New conductor is developed by using high strength nonmagnetic steel(NM) wire as the core of overhead conductor This conductor is called ACNR overhead conductor(Aluminum Conductor Nonmagnetic Steel Reinforced). Formed by the combination of aluminum alloy wire and high strength nonmagnetic steel wire, it has about the same weight and diameter as conventional ACSR overhead conductor. To enhance properties beneficial in an electrical and mechanical conductor during the Process of high strength nonmagnetic steel wire, we made a large number of improvements and modifications in the working process, aluminum cladded method, and other process. ACNR overhead conductor, we successfully developed, has mechanical and electrical properties as good as or even better than conventional galvanized wire. Microstructure of raw material NM wire was austenite and then deformed martensite after drawing process. Strength at room temperature is about $180kgf/mm^2\~200kgf/mm^2$. The conductivity at 0.78 mm thickness of Aluminum cladded M wire is about $7\%$ IACS higher than $20\%$IACS of HC wire used as core of commercial ACSR overhead conductor. The corrosion resistance is about 3 times higher than that of HC wire.

콘크리트의 제 성질 향상을 위한 혼화재 활용에 대한 연구 (A Study on the Utilization of mineral Admixture to Improve the Properties of Concrete)

  • 문한영;문대중;신화철
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1997년도 봄 학술발표회 논문집
    • /
    • pp.124-128
    • /
    • 1997
  • In order tohave a betterunderstanding of thefavorable effect ofground granulated blast-furnace slag and fly ash, slump loss, temperature risingand compressive strength of concrete were investigated into diffrent conditions. When slag was mixed with ordinary portland cement as30%, slump loss gotto some 18% at 60min, maximum temperatureto some $43^{\cire}C$ at 180min, compressive strength similar to that of ordinary portland concrete at 28 days. Therefore it wasnoted thatslump loss andmaximum teaperaturerising of concrete were very reduced according to ground granulated blast-furnace slag and fly ash mixed with ordinary portland cement.

  • PDF

광물질 혼화재 및 석고를 사용한 고강도 콘크리트의 슬럼프 손실 (Slump Loss of High Strength Concrete Containing Mineral Admixture and Gypsum)

  • 김기형;최재진
    • 한국안전학회지
    • /
    • 제12권1호
    • /
    • pp.101-107
    • /
    • 1997
  • High strength concrete(HSC) using high range water reducing admixture (HRWR) has the defect which severe slump loss occurs according to elapsed time. For using HSC without any trouble, special caution and countermeasure against this problem are necessary. In this study, for minimizing the slump loss of HSC, mineral admixture( flyash, ground granulated blast furnace slag ) and gypsum were used experimentally. Flyash and ground granulated blast furnace slag are effective in reducing the slump loss of HSC. Especially, the slump loss of HSC containing mineral admixture and gypsum Is minimized by the aggregation inhibiting action of gypsum. Cement substituted with flyash 30% or ground granulated blast furnace slag 50% by weight are very effective in minimizing the slump loss.

  • PDF

알칼리와 셀룰라아제 처리에 의한 아세테이트 직물의 표면 형태 및 성능의 변화 (Changes in Surface Shape and Physical Properties of Acetate Fabrics by Alkaline and Cellulase Treatment)

  • 이애진;이혜자;유혜자
    • 한국염색가공학회지
    • /
    • 제13권1호
    • /
    • pp.9-17
    • /
    • 2001
  • The purpose of this study is to present basic data for the enzymatic modification of acetate fabrics. The weight loss and rate of weight loss of acetate fabrics increased with increasing NaOH concentration and treating time. Acetyl value decreased as the weight loss became higher. The weight loss of alkaline-treated acetate fabrics were directly proportional to the concentration and treating time of cellulase. The optimum temperature and pH in cellulase treatment were $55^\circ{C}$ and pH 3.5. The surface shape revealed that density of fiber decreased by alkaline-treatment. With the treating time of cellulase, fibrillation occurred. In case of higher weight loss in alkaline treatment, fibril is removed after 180 min. The tensile strength decreased by alkaline and cellulase treatment. Especially, in case of higher weight loss of alkaline treatment, tensile strength decreased suddenly. Alkaline treatment increased the drapability of acetates, while cellulase treatment increased it initially but decreased gradually with treatment time. The dyeability after alkaline treatment was improved for reactive dye, but deteriorated for disperse dye. The cellulase treatment of acetate lowered the dyeability for both types of dyes.

  • PDF

An investigation on the mortars containing blended cement subjected to elevated temperatures using Artificial Neural Network (ANN) models

  • Ramezanianpour, A.A.;Kamel, M.E.;Kazemian, A.;Ghiasvand, E.;Shokrani, H.;Bakhshi, N.
    • Computers and Concrete
    • /
    • 제10권6호
    • /
    • pp.649-662
    • /
    • 2012
  • This paper presents the results of an investigation on the compressive strength and weight loss of mortars containing three types of fillers as cement replacements; Limestone Filler (LF), Silica Fume (SF) and Trass (TR), subjected to elevated temperatures including $400^{\circ}C$, $600^{\circ}C$, $800^{\circ}C$ and $1000^{\circ}C$. Results indicate that addition of TR to blended cements, compared to SF addition, leads to higher compressive strength and lower weight loss at elevated temperatures. In order to model the influence of the different parameters on the compressive strength and the weight loss of specimens, artificial neural networks (ANNs) were adopted. Different diagrams were plotted based on the predictions of the most accurate networks to study the effects of temperature, different fillers and cement content on the target properties. In addition to the impressive RMSE and $R^2$ values of the best networks, the data used as the input for the prediction plots were chosen within the range of the data introduced to the networks in the training phase. Therefore, the prediction plots could be considered reliable to perform the parametric study.

공동주택 이중관 공법의 현안 분석 및 개선 연구 (A Study on the Status and Improvement of Double Pipe System in Apartment Buildings)

  • 김명석;김영일;정광섭
    • 설비공학논문집
    • /
    • 제25권1호
    • /
    • pp.37-42
    • /
    • 2013
  • Double pipe system in which PB pipe is inserted in CD pipe buried in the concrete slab is widely used for cold and hot water supplies in apartment housings. The system, however becomes complicated and the overlaying pipes in the concrete slab weaken the compressive strength of the slab. Also, insufficient insulation increases energy loss. In this work, the problems of the double pipe system are studied and plans A, B, and C are suggested for improvement. In terms of compressive strength of the concrete slab, plan A(total pipe length 73 m) was the weakest and plan B(2 m) was the strongest. Energy loss of plan A was the largest with 558.9 W and plan B was the lowest with 220.7 W. However, considering the combined effect of strength and heat loss, plan C becomes the best choice, which retains the advantage of the double pipe system.

고강도 콘크리트의 배합방법과 운반특성에 관한 실험적 연구 (An Experimental Study on the High Strength Concrete Properties for Mixing Methods and Elapsed time)

  • 권녕호;안재현;박칠림
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1992년도 봄 학술발표회 논문집
    • /
    • pp.7-12
    • /
    • 1992
  • The aim of this study is to develop economical High-Strength and High-Quality Concrete, and to assure quality control of Concrete in the field. For this purpose, Five types of Mixing Methods are examined and the relationship between slump loss and slump recovery by transport is studied. As a result, workability and strength are dependent on the Mixing Method, although the Mixing proportions are same, Also, adding admixture in the field is proposed as an alternative to consider the relationship between slump loss and slump recovery.

  • PDF

부착 손실이 철근콘크리트 보의 전단강도에 미치는 영향 (Shear Strength of RC Beams with Exposed Reinforcement)

  • 명근학;이창신;김대중;모귀석;김우
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 봄학술 발표회 논문집(I)
    • /
    • pp.387-390
    • /
    • 2005
  • Reinforcement corrosion is the principal cause of deterioration of reinforced concrete. It is to be expected that loss of bond between concrete and tension reinforcement would lead to a reduction in shear strength of RC beams designed to fail in shear. This paper presents results of a FE analysis study to evaluate the shear strength of RC beams with exposed reinforcement represented the limiting condition of bond loss.

  • PDF

벼알의 인장강도 및 탈립성의 등숙중 변화와 품종간 차이 및 포장손실과의 관계 (Differences among Major Rice Cultivars in Tensile Strength and Shattering of Grains during Ripening and Field Loss of Grains)

  • Y. W. Kwon;J. C. Shin;C. J. Chung
    • 한국작물학회지
    • /
    • 제27권1호
    • /
    • pp.1-10
    • /
    • 1982
  • 주요 수도품종들의 탈립성 정도와 곡립의 인장강도와 탈립성 및 수확작업시 포장손실과의 관계를 밝히므로서 탈립성에 관한 품종개량 및 포장손실의 최소화에 도움을 주고자 본 연구를 수행하였다. 11개 품종을 공시 공시했으며 출수 후 35일부터 63일까지의 기간에 1주일 간격으로 품종 및 수확기 별로 임의 추출한 10이삭 200립씩에 대한 곡립의 인장강도, 탈립정도 및 수분함량을 측정했으며, 탈립정도는 이삭을 수확직후 1.5m 지상에서 콘크리트바닥에 낙하시켰을 때 탈립되는 곡립수의 전곡립수에 대한 비율이었다. 또한 포장손실과 곡립의 인장강도와의 관계는 농가포장에서 2품종을 선정하여 출수 후 40일부터 1주일 간격으로 3-4회 binder harvester를 실제 사용하여 포장에 탈립된 량을 측정하고 이를 같은 재료에 대해 측정한 곡립의 인장강도와 관계를 지었으며 3반복하였다. 그 주요결과는 다음과 같이 요약된다. 1. 공시품종들의 평균 곡립인장강도는 90g(밀양 2003) 정도부터 250g(진흥) 정도까지의 범위에서 품종 및 수확기에 따라 차이가 있었으며, 그 표준편차는 30-60g 정도이었는데 곡립의 평균 인장강도가 큰 품종일수록 편차가 컸다. 2. 낙하검정에 의한 곡립의 탈립정도는 밀양2003 20-30%, 수원 29004 3-16%, 한강찰 13-15%, 이리 348호 1-21%, 금강 및 태백 1% 정도로서 수확기에 따라 다소간 차이를 보였다. 3. 낙하검정에서 탈립하기 시작하는 평균 인장강도는 180g이었고, 공시이삭들의 곡립들 중 인장강도가 98g 이상인 것들은 탈립하지 않았으며 인장강도가 10g 저하하면 탈립율은 3-5% 증가했다. 4. 낙동벼와 이리 348호는 수확기가 늦어지면 곡립의 인장강도가 작아지었지만 그밖의 품종들에서는 반대로 인장강도가 다소간 커지거나 별로 변화하지 않았으며, 탈립율도 이리 348호를 제외하면 수확기의 영향을 크게 받지 않았고, 곡립의 인장강도는 수분함량과 대체로 역상관관계를 보였다. 5. 곡립의 평균 인장강도와 binder 수확시의 포장손실량과는 부의 상관이 있었으며, binder 수확시 포장손실이 일어나지 않게 되는 한계 평균인장강도는 174g이었으며 그 이하에서 평균인장강도가 10g 저하되면 포장손실은 ha당 40kg 정도 증가하였다. 6. 현재 품종들의 탈립성 분류기준으로 사용되고 있는 평균인장강도는 그 분산이 변이가 크고, 환경의 영향을 많이 받으며 이삭의 곡립들 중 수확작업시 실제로 탈립이 잘 되는 곡립은 인장강도가 98g이하이었으므로 품종의 탈립성 판정 및 포장손실의 추정을 위해서는 표본중 인장강도가 100g 이하인 곡립들의 전곡립수에 대한 비율을 기준으로 할 것을 제의한다.

  • PDF