• Title/Summary/Keyword: strength loss

Search Result 1,486, Processing Time 0.034 seconds

Mechanical Characteristics of Automobile Brake Pads (자동차 브레이크 패드의 기계적 특성 연구)

  • Shin, Jaeho;Kim, Kyungjin;Kang, Woojong
    • Journal of Auto-vehicle Safety Association
    • /
    • v.7 no.3
    • /
    • pp.19-24
    • /
    • 2015
  • Brake pads are a component of disc brake system of automobile and consist of steel backing plates and friction material facing the disk brake rotor. Due to the repeated sliding forces and torque in vehicle braking, friction performance of brake pads are ensured. Futhermore, the brake pad is one of major tuning components in aftermarket, mechanical characteristics of the brake pad are necessary to evaluate for establishing the certification standards of tuning components. This study had performed the five specimen tests for friction coefficients and wear loss rates according to the SAE test specification. Using the instrumented indentation method, yield strength and tensile strength were measured. Friction coefficients, 0.386 - 0.489, and wear loss rates, 1.0% - 3.7% are obtained. The range of yield strength and tensile strength are 21.4 MPa - 105.3 MPa and 39.5 MPa - 176.4 MPa respectively.

Development of High Strength and Low Loss Overhead Conductor(II) - Electric Properties (고강도 저손실 가공송전선의 개발(II) - 전기적 특성)

  • Kim, Byung-Geol;Kim, Shang-Shu;Park, Joo-Hwan
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.12
    • /
    • pp.1159-1165
    • /
    • 2005
  • New conductor is developed by using high strength nonmagnetic steel(NM) wire as the core of overhead conductor This conductor is called ACNR overhead conductor(Aluminum Conductor Nonmagnetic Steel Reinforced). Formed by the combination of aluminum alloy wire and high strength nonmagnetic steel wire, it has about the same weight and diameter as conventional ACSR overhead conductor. To enhance properties beneficial in an electrical and mechanical conductor during the Process of high strength nonmagnetic steel wire, we made a large number of improvements and modifications in the working process, aluminum cladded method, and other process. ACNR overhead conductor, we successfully developed, has mechanical and electrical properties as good as or even better than conventional galvanized wire. Microstructure of raw material NM wire was austenite and then deformed martensite after drawing process. Strength at room temperature is about $180kgf/mm^2\~200kgf/mm^2$. The conductivity at 0.78 mm thickness of Aluminum cladded M wire is about $7\%$ IACS higher than $20\%$IACS of HC wire used as core of commercial ACSR overhead conductor. The corrosion resistance is about 3 times higher than that of HC wire.

A Study on the Utilization of mineral Admixture to Improve the Properties of Concrete (콘크리트의 제 성질 향상을 위한 혼화재 활용에 대한 연구)

  • 문한영;문대중;신화철
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.04a
    • /
    • pp.124-128
    • /
    • 1997
  • In order tohave a betterunderstanding of thefavorable effect ofground granulated blast-furnace slag and fly ash, slump loss, temperature risingand compressive strength of concrete were investigated into diffrent conditions. When slag was mixed with ordinary portland cement as30%, slump loss gotto some 18% at 60min, maximum temperatureto some $43^{\cire}C$ at 180min, compressive strength similar to that of ordinary portland concrete at 28 days. Therefore it wasnoted thatslump loss andmaximum teaperaturerising of concrete were very reduced according to ground granulated blast-furnace slag and fly ash mixed with ordinary portland cement.

  • PDF

Slump Loss of High Strength Concrete Containing Mineral Admixture and Gypsum (광물질 혼화재 및 석고를 사용한 고강도 콘크리트의 슬럼프 손실)

  • 김기형;최재진
    • Journal of the Korean Society of Safety
    • /
    • v.12 no.1
    • /
    • pp.101-107
    • /
    • 1997
  • High strength concrete(HSC) using high range water reducing admixture (HRWR) has the defect which severe slump loss occurs according to elapsed time. For using HSC without any trouble, special caution and countermeasure against this problem are necessary. In this study, for minimizing the slump loss of HSC, mineral admixture( flyash, ground granulated blast furnace slag ) and gypsum were used experimentally. Flyash and ground granulated blast furnace slag are effective in reducing the slump loss of HSC. Especially, the slump loss of HSC containing mineral admixture and gypsum Is minimized by the aggregation inhibiting action of gypsum. Cement substituted with flyash 30% or ground granulated blast furnace slag 50% by weight are very effective in minimizing the slump loss.

  • PDF

Changes in Surface Shape and Physical Properties of Acetate Fabrics by Alkaline and Cellulase Treatment (알칼리와 셀룰라아제 처리에 의한 아세테이트 직물의 표면 형태 및 성능의 변화)

  • 이애진;이혜자;유혜자
    • Textile Coloration and Finishing
    • /
    • v.13 no.1
    • /
    • pp.9-17
    • /
    • 2001
  • The purpose of this study is to present basic data for the enzymatic modification of acetate fabrics. The weight loss and rate of weight loss of acetate fabrics increased with increasing NaOH concentration and treating time. Acetyl value decreased as the weight loss became higher. The weight loss of alkaline-treated acetate fabrics were directly proportional to the concentration and treating time of cellulase. The optimum temperature and pH in cellulase treatment were $55^\circ{C}$ and pH 3.5. The surface shape revealed that density of fiber decreased by alkaline-treatment. With the treating time of cellulase, fibrillation occurred. In case of higher weight loss in alkaline treatment, fibril is removed after 180 min. The tensile strength decreased by alkaline and cellulase treatment. Especially, in case of higher weight loss of alkaline treatment, tensile strength decreased suddenly. Alkaline treatment increased the drapability of acetates, while cellulase treatment increased it initially but decreased gradually with treatment time. The dyeability after alkaline treatment was improved for reactive dye, but deteriorated for disperse dye. The cellulase treatment of acetate lowered the dyeability for both types of dyes.

  • PDF

An investigation on the mortars containing blended cement subjected to elevated temperatures using Artificial Neural Network (ANN) models

  • Ramezanianpour, A.A.;Kamel, M.E.;Kazemian, A.;Ghiasvand, E.;Shokrani, H.;Bakhshi, N.
    • Computers and Concrete
    • /
    • v.10 no.6
    • /
    • pp.649-662
    • /
    • 2012
  • This paper presents the results of an investigation on the compressive strength and weight loss of mortars containing three types of fillers as cement replacements; Limestone Filler (LF), Silica Fume (SF) and Trass (TR), subjected to elevated temperatures including $400^{\circ}C$, $600^{\circ}C$, $800^{\circ}C$ and $1000^{\circ}C$. Results indicate that addition of TR to blended cements, compared to SF addition, leads to higher compressive strength and lower weight loss at elevated temperatures. In order to model the influence of the different parameters on the compressive strength and the weight loss of specimens, artificial neural networks (ANNs) were adopted. Different diagrams were plotted based on the predictions of the most accurate networks to study the effects of temperature, different fillers and cement content on the target properties. In addition to the impressive RMSE and $R^2$ values of the best networks, the data used as the input for the prediction plots were chosen within the range of the data introduced to the networks in the training phase. Therefore, the prediction plots could be considered reliable to perform the parametric study.

A Study on the Status and Improvement of Double Pipe System in Apartment Buildings (공동주택 이중관 공법의 현안 분석 및 개선 연구)

  • Kim, Myoung-Seok;Kim, Youngil;Chung, Kwang-Seop
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.1
    • /
    • pp.37-42
    • /
    • 2013
  • Double pipe system in which PB pipe is inserted in CD pipe buried in the concrete slab is widely used for cold and hot water supplies in apartment housings. The system, however becomes complicated and the overlaying pipes in the concrete slab weaken the compressive strength of the slab. Also, insufficient insulation increases energy loss. In this work, the problems of the double pipe system are studied and plans A, B, and C are suggested for improvement. In terms of compressive strength of the concrete slab, plan A(total pipe length 73 m) was the weakest and plan B(2 m) was the strongest. Energy loss of plan A was the largest with 558.9 W and plan B was the lowest with 220.7 W. However, considering the combined effect of strength and heat loss, plan C becomes the best choice, which retains the advantage of the double pipe system.

An Experimental Study on the High Strength Concrete Properties for Mixing Methods and Elapsed time (고강도 콘크리트의 배합방법과 운반특성에 관한 실험적 연구)

  • 권녕호;안재현;박칠림
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1992.04a
    • /
    • pp.7-12
    • /
    • 1992
  • The aim of this study is to develop economical High-Strength and High-Quality Concrete, and to assure quality control of Concrete in the field. For this purpose, Five types of Mixing Methods are examined and the relationship between slump loss and slump recovery by transport is studied. As a result, workability and strength are dependent on the Mixing Method, although the Mixing proportions are same, Also, adding admixture in the field is proposed as an alternative to consider the relationship between slump loss and slump recovery.

  • PDF

Shear Strength of RC Beams with Exposed Reinforcement (부착 손실이 철근콘크리트 보의 전단강도에 미치는 영향)

  • Myung, Gun-Hak;Rhee, Chang-Shin;Kim, Dae-Joong;Mo, Gui-Suk;Kim, Woo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.387-390
    • /
    • 2005
  • Reinforcement corrosion is the principal cause of deterioration of reinforced concrete. It is to be expected that loss of bond between concrete and tension reinforcement would lead to a reduction in shear strength of RC beams designed to fail in shear. This paper presents results of a FE analysis study to evaluate the shear strength of RC beams with exposed reinforcement represented the limiting condition of bond loss.

  • PDF

Differences among Major Rice Cultivars in Tensile Strength and Shattering of Grains during Ripening and Field Loss of Grains (벼알의 인장강도 및 탈립성의 등숙중 변화와 품종간 차이 및 포장손실과의 관계)

  • Y. W. Kwon;J. C. Shin;C. J. Chung
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.27 no.1
    • /
    • pp.1-10
    • /
    • 1982
  • Degree of grain shattering which is of varietal character is an important determinant for the magnitude of field loss of grains during harvest and threshing. Seven Indica \times Japonica progeny varieties and four Japonica varieties were subjected to measurements of tensile strength of grains, degree of grain shattering when panicles were dropped at 1.5m above concrete floor, and moisture content of grains (wet basis) during a period 35 to 63 days after heading. In addition, two varieties were tested for the relation of tensile strength of grains to the magnitude of field loss of grains in actual binder harvest. The 11 varieties differed conspicuously in tensile strength of grains and the degree of grain shattering: the weakest average tensile strength of grains of a variety was about 90g and the strongest about 250g with varying standard deviation of 30 to 60g. Three Indica \times Japonica varieties and one Japonica variety shattered I to 30% of the grains under the falling test. The threshold tensile strength of grains allowing grain shattering was estimated to be 180g on average for a sampling unit of 10 panicles, but only the grains having tensile strength weaker than 98g within the samples shattered. A decrease in average tensile strength by 10g below the threshold value corresponded to an increase of 3 to 5% in grain shattering. Most varieties did not change appreciably the tensile strength of grains and degree of grain shattering with delay in time of harvest and showed a negative correlation between the tensile strength and the moisture content of grains. The average tensile strength of grains was negatively correlated linearly with field loss in binder harvest. The average tensile strength for zero field loss in binder harvest was estimated to be 174g and a decrease in the average tensile strength by 10g corresponded to an increase of 40kg per hectare in field loss of grains. Instead of the average tensile strength of grains, the percentage of grains having tensile strength weaker than 100g is recommended as a criterion for the estimation of field loss of grains during harvesting operations as well as a basis of variety classification for grain shattering, since the standard deviation of tensile strength of grains varies much with variety and time of harvest, and individual grains having tensile strength stronger than 98 did not shatter practically.

  • PDF