• Title/Summary/Keyword: strength degradation

Search Result 1,119, Processing Time 0.027 seconds

Assessment of concrete degradation in existing structures: a practical procedure

  • Porco, Francesco;Uva, Giuseppina;Fiore, Andrea;Mezzina, Mauro
    • Structural Engineering and Mechanics
    • /
    • v.52 no.4
    • /
    • pp.701-721
    • /
    • 2014
  • In the assessment of existing RC buildings, the reliable appraisal of the compressive strength of in-situ concrete is a fundamental step. Unfortunately, the data that can be obtained by the available testing methods are typically affected by a high level of uncertainty. Moreover, in order to derive indications about the degradation and ageing of the materials by on site tests, it is necessary to have the proper terms of comparison, that is to say, to know the reference data measured during the construction phases, that are often unavailable when the building is old. In the cases when such a comparison can be done, the in situ strength values typically turn out to be lower than the reference strength values (tests performed on taken samples during the construction). At this point, it is crucial to discern and quantify the specific effect induced by different factors: ageing of the materials; poor quality of the placement, consolidation or cure of the concrete during the construction phases; damage due to drilling. This paper presents a procedure for correlating the destructive compressive tests and non-destructive tests (ultrasonic pulse velocity tests) with the data documenting the compressive strength tested during the construction phases. The research work is aimed at identifying the factors that induce the difference between the in-situ strength and cubes taken from the concrete casting, and providing, so, useful information for the assessment procedure of the building.

Evaluation of Fracture Strength and Material Degradation for Weldment of High Temperature Service Steel Using Advanced Small Punch Test

  • Lee, Dong-Hwan
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.9
    • /
    • pp.1604-1613
    • /
    • 2004
  • This paper presents an effective and reliable evaluation method for fracture strength and material degradation of the micro-structure of high temperature service steel weldment using advanced small punch (ASP) test developed from conventional small punch (CSP) test. For the purpose of the ASP test, a lower die with a minimized ${\Phi}$1.5 mm diameter loading ball and an optimized deformation guide hole of ${\Phi}$3 mm diameter were designed. The behaviors of fracture energy (E$\_$sp/), ductile-brittle transition temperature (DBTT) and material degradation from the ASP test showed a definite dependency on the micro-structure of weldment. Results obtained from ASP test were compared and reviewed with results from CSP test, Charpy impact test, and hardness test. The utility and reliability of the proposed ASP test were verified by investigating fracture strength, behavior of DBTT, and fracture location of each micro-structure of steel weldment for test specimen in ASP test. It was observed that the fracture toughness in the micro-structure of FL+CGHAZ and ICHAZ decreased remarkably with increasing aging time. From studies of all micro-structures, it was observed that FGHAZ microstructure has the most excellent fracture toughness, and it showed absence of material degradation.

Numerical prediction of stress and displacement of ageing concrete dam due to alkali-aggregate and thermal chemical reaction

  • Azizan, Nik Zainab Nik;Mandal, Angshuman;Majid, Taksiah A.;Maity, Damodar;Nazri, Fadzli Mohamed
    • Structural Engineering and Mechanics
    • /
    • v.64 no.6
    • /
    • pp.793-802
    • /
    • 2017
  • The damage of concrete due to the expansion of alkali-aggregate reaction (AAR) and thermal-chemical reactions affecting the strength of concrete is studied. The empirical equations for the variations of expansion of AAR, compressive strength and degradation of the modulus of elasticity with time, and compressive strength with degradation of the modulus of elasticity are proposed by analysing numerous experimental data. It is revealed that the expansion of AAR and compressive strength increase with time. The proposed combination of the time variations of chemical and mechanical parameters provides a satisfactory prediction of the concrete strength. Seismic analysis of the aged Koyna dam is conceded for two different long-term experimental data of concrete incorporating the proposed AAR based properties. The responses of aged Koyna dam reveal that the crest displacement of the Koyna dam significantly increases with time while the contour plots show that major principal stress at neck level reduces with time. As the modulus of elasticity decreases with ages the stress generated in the concrete structure get reduces. On the other hand with lesser value of modulus of elasticity the structure becomes more flexible and the crest displacement becomes very high that cause the seismic safety of the dam reduce.

Bonding Strength of Cu/SnAgCu Joint Measured with Thermal Degradation of OSP Surface Finish (OSP 표면처리의 열적 열화에 따른 Cu/SnAgCu 접합부의 접합강도)

  • Hong, Won-Sik;Jung, Jae-Seong;Oh, Chul-Min
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.19 no.1
    • /
    • pp.47-53
    • /
    • 2012
  • Bonding strength of Sn-3.0Ag-0.5Cu solder joint due to degradation characteristic of OSP surface finish was investigated, compared with SnPb finish. The thickness variation and degradation mechanism of organic solderability preservative(OSP) coating were also analyzed with the number of reflow process. To analyze the degradation degree of solder joint strength, FR-4 PCB coated with OSP and SnPb were experienced preheat treatment as a function of reflow number from 1st to 6th pass, respectively. After 2012 chip resistors were soldered with Sn-3.0Ag-0.5Cu on the pre-heated PCB, the shear strength of solder joints was measured. The thickness of OSP increased with increase of the number of reflow pass by thermal degradation during the reflow process. It was also observed that the preservation effect of OSP decreased due to OSP degradation which led Cu pad oxidation. The mean shear strength of solder joints formed on the Cu pads finished with OSP and SnPb were 58.1 N and 62.2 N, respectively, through the pre-heating of 6 times. Although OSP was degraded with reflow process, the feasibility of its application was proven.

Evaluation on Basic Properties of Crushed Sand Mortar in Freezing-Thawing and Sulfate Attack (동결융해와 황산염의 복합작용을 받는 부순모래 모르타르의 기초 특성 평가)

  • Kim, Myeong-Sik;Baek, Dong-Il;Choi, Kang-Seok
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.5
    • /
    • pp.54-60
    • /
    • 2009
  • Exposed to various environments, concrete confronts degradation by a lot of physical and chemical reaction. Though so many experiments and theorizations on the single condition of concrete degradation have been carried out by constant studies, the truth for now is that there are few studies on the compound phenomenon of degradation related with marine environments. Accordingly, this study measured the degree of degradation in the change of external shape, the change of unit weight and compressive strength, ultrasonic velocity test, and the change of length, etc. after exposing the specimen of cement mortar to the environment between 0 cycle and the maximum of 300 cycles under the condition of aquatic curing, freezing and thawing, and compound degradation, using mineral admixture effective for concrete degradation as a binder. The result indicated that the case of adding mineral admixture showed greater resistance than that of using OPC only, and specifically, the specimen with the additive of slag powder and three component system showed very excellent resistance to freezing and thawing, and compound degradation.

Influence of pH, Temperature, Ionic Strength and Metal Ions on the Degradation of an Iridoid Glucoside, Aucubin, in Buffered Aqueous Solutions (완충 수용액중 pH, 온도, 이온강도 및 금속이온이 Aucubin의 분해에 미치는 영향)

  • Chun, In-Koo;Cho, Young-Mee
    • Journal of Pharmaceutical Investigation
    • /
    • v.25 no.3
    • /
    • pp.239-247
    • /
    • 1995
  • The physico-chemical stability of aucubin, a hepatoprotective iridoid glucoside, in buffered aqueous solutions was studied using a stability-indicating reversed-phase high performance liquid chromatography. The degradation of aucubin followed the pseudo-first-order kinetics. In strong acidic regions, aucubin was rapidly degraded by the specific acid catalysis, forming dark brown precipitates. From the rate-pH profiles, it was found that aucubin was most stable at the pH of about 10. From the temperature dependence of degradation, activation energies for aucubin at pH 2.1 and 4.9 were calculated to be 22.0 and 24.3 kcal/mole, respectively. The shelf-life $(t_{90%})$ for aucubin at pH 9.07 and $20^{\circ}C$ was predicted to be about 603 days. A higher ionic strength accelerated the degradation of aucubin at pH 4.01. The effect of metal ions on the degradation rate of aucubin at pH 7.16 was in the rank order of $Cu^{2+}\;>\;Fe^{3+}\;>\;Co^{2+}\;>\;Fe^{2+}\;>\;Mg^{2+}$. On the other hand, $Mn^{2+}\;and\;Ba^{2+}$ slowed the degradation rate.

  • PDF

Experimental research on seismic behavior of steel reinforced high-strength concrete short columns

  • Zhu, Weiqing;Jia, Jinqing;Zhang, Junguang
    • Steel and Composite Structures
    • /
    • v.25 no.5
    • /
    • pp.603-615
    • /
    • 2017
  • This experimental research presents the seismic performance of steel reinforced high-strength concrete (SRHC) short columns. Eleven SRHC column specimens were tested under simulated earthquake loading conditions, including six short column specimens and five normal column specimens. The parameters studied included the axial load level, stirrup details and shear span ratio. The failure modes, critical region length, energy dissipation capacity and deformation capacity, stiffness and strength degradation and shear displacement of SRHC short columns were analyzed in detail. The effects of the parameters on seismic performance were discussed. The test results showed that SRHC short columns exhibited shear-flexure failure characteristics. The critical region length of SRHC short columns could be taken as the whole column height, regardless of axial load level. In comparison to SRHC normal columns, SRHC short columns had weaker energy dissipation capacity and deformation capacity, and experienced faster stiffness degradation and strength degradation. The decrease in energy dissipation and deformation capacity due to the decreasing shear span ratio was more serious when the axial load level was higher. However, SRHC short columns confined by multiple stirrups might possess good seismic behavior with enough deformation capacity (ultimate drift ratio ${\geq}2.5%$), even though a relative large axial load ratio (= 0.38) and relative small structural steel ratio (= 3.58%) were used, and were suitable to be used in tall buildings in earthquake regions.

Corrosion and Strength Degradation Characteristics of 1.25Cr-0.5Mo Steel under SO2 Gas Environment (SO2 가스 환경 하에서 1.25Cr-0.5Mo 강의 부식 및 강도 저하 특성)

  • Jung, Kwang-Hu;Kim, Seong-Jong
    • Journal of the Korean institute of surface engineering
    • /
    • v.51 no.3
    • /
    • pp.149-156
    • /
    • 2018
  • The corrosion and strength degradation characteristics of 1.25Cr-0.5Mo steels were studied under $650^{\circ}C$ in $76%N_2+6%O_2+16%CO_2+2%SO_2$ gas condition up to 500 hrs. Corroded specimens were characterized by weight gain, scanning electron microscope(SEM), energy dispersive X-ray spectroscopy(EDS), and X-ray diffraction(XRD). The tensile test was conducted to evaluate the mechanical strength and fracture mode with corrosion at high temperature. As the results of the experiments, thick Fe-rich oxide layers over $200{\mu}m$ were formed on the surface within 500 hrs. The thick oxide layers are formed with reduction of the cross-sectional area of the specimens. Thus, the strength tended to decrease with reduction of the cross-sectional area.

Inelastic displacement ratios for evaluation of stiffness degrading structures with soil structure interaction built on soft soil sites

  • Aydemir, Muberra Eser
    • Structural Engineering and Mechanics
    • /
    • v.45 no.6
    • /
    • pp.741-758
    • /
    • 2013
  • In this study, inelastic displacement ratios are investigated for existing systems with known lateral strength considering soil structure interaction. For this purpose, SDOF systems for period range of 0.1-3.0 s with different hysteretic behaviors are considered for a number of 18 earthquake motions recorded on soft soil. The effect of stiffness degradation on inelastic displacement ratios is investigated. The Modified Clough model is used to represent structures that exhibit significant stiffness degradation when subjected to reverse cyclic loading and the elastoplastic model is used to represent non-degrading structures. Soil structure interaction analyses are conducted by means of equivalent fixed base model effective period, effective damping and effective ductility values differing from fixed-base case. For inelastic time history analyses, Newmark method for step by step time integration was adapted in an in-house computer program. A new equation is proposed for inelastic displacement ratio of system with SSI with elastoplastic or degrading behavior as a function of structural period ($\tilde{T}$), strength reduction factor (R) and period lengthening ratio ($\tilde{T}$/T). The proposed equation for $\tilde{C}_R$ which takes the soil-structure interaction into account should be useful in estimating the inelastic deformation of existing structures with known lateral strength.

Loading Rate Effects During Static Indentation and Impact on Silicon Carbide with Small Sphere (탄화규소에 구형입자의 정적압입 및 충격시 부하속도의 영향)

  • Shin, Hyung-Seop
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.12
    • /
    • pp.3847-3855
    • /
    • 1996
  • In order to study the relationship between static and cynamic behaviors of silion caride, both quasi-static indentaiton and impact experiments of spherical particle have been conducted. The difference inmaterial behavior when using the two mehtods suggests a loading rate difference in the damate pattrern and fracture strength of silicon carbide. This investigation showed some difference in damage pattern according to particla property, especially inthe case of particle impact. There was no differences in deformation behaviors according to the loading rate when the crater profiles were compared with each other at the same contact radius. From the result of residual strength evaluation, it was found that the strength degradation began at the initiation of ring crack and its behavior was colsely related to morphologies of the damage developed which was also dependent upon the extent of deformation atthe loaidng point. In the case of static indentation, there didnot exist the particle property effects onthe strength degradation behavior.