• 제목/요약/키워드: strength, surface roughness

검색결과 535건 처리시간 0.032초

Shear bond strength of a new self-adhering flowable composite resin for lithium disilicate-reinforced CAD/CAM ceramic material

  • Erdemir, Ugur;Sancakli, Hande Sar;Sancakli, Erkan;Eren, Meltem Mert;Ozel, Sevda;Yucel, Taner;Yildiz, Esra
    • The Journal of Advanced Prosthodontics
    • /
    • 제6권6호
    • /
    • pp.434-443
    • /
    • 2014
  • PURPOSE. The purpose of this study was to evaluate and compare the effects of different surface pretreatment techniques on the surface roughness and shear bond strength of a new self-adhering flowable composite resin for use with lithium disilicate-reinforced CAD/CAM ceramic material. MATERIALS AND METHODS. A total of one hundred thirty lithium disilicate CAD/CAM ceramic plates with dimensions of $6mm{\times}4mm$ and 3 mm thick were prepared. Specimens were then assigned into five groups (n=26) as follows: untreated control, coating with $30{\mu}m$ silica oxide particles ($Cojet^{TM}$ Sand), 9.6% hydrofluoric acid etching, Er:YAG laser irradiation, and grinding with a high-speed fine diamond bur. A self-adhering flowable composite resin (Vertise Flow) was applied onto the pre-treated ceramic plates using the Ultradent shear bond Teflon mold system. Surface roughness was measured by atomic force microscopy. Shear bond strength test were performed using a universal testing machine at a crosshead speed of 1 mm/min. Surface roughness data were analyzed by one-way ANOVA and the Tukey HSD tests. Shear bond strength test values were analyzed by Kruskal-Wallis and Mann-Whitney U tests at ${\alpha}=.05$. RESULTS. Hydrofluoric acid etching and grinding with high-speed fine diamond bur produced significantly higher surface roughness than the other pretreatment groups (P<.05). Hydrofluoric acid etching and silica coating yielded the highest shear bond strength values (P<.001). CONCLUSION. Self-adhering flowable composite resin used as repair composite resin exhibited very low bond strength irrespective of the surface pretreatments used.

쇼트피닝에 의한 재료의 특성에 관한 연구 (Study on the characteristics of shot peened material)

  • 이승호
    • 한국생산제조학회지
    • /
    • 제7권2호
    • /
    • pp.15-22
    • /
    • 1998
  • The effects of shot peening an the fatigue strength are studied in this paper. Applying the multistage shot peening on the material. the relation between the residual stress and fatigue strength compressive is investigated. Observing tensile strength elongation. reduction of area. hardness. and roughness. the results can be summarized as follows ; 1.The change of mechanical properties is small before and after the shot peening is carried out. The change of hardness is also small in high hardness material. 2.The surface roughness does not affect the fatigue strength. but the surface roughness is improved by multi-stage shot peening. 3.The fatigue strength of multi-stage shot peening material is 756MPa and is 1.78 times higher than that of un-peened material. 4.The maximum compressive residual strength of multi-stage shot peening material is -792MPa the fatigue strength seems to be improved by residual stress.

  • PDF

부식된 철근의 표면 거칠기에 관한 연구 (A Study on the Surface Roughness of Corroded Reinforcing Rebar)

  • 노영숙;이선규
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제14권1호
    • /
    • pp.78-83
    • /
    • 2010
  • 철근부식에 의해 발생된 녹은 철근 주위의 콘크리트에 팽창압력을 발생시켜 콘크리트의 균열유발, 피복콘크리트의 박리나 탈락, 철근의 단면적 감소들을 야기 시킨다. 또한 철근콘크리트 구조물 내에 매입된 철근의 부식은 철근과 콘크리트의 일체 거동을 저하시킴으로써 구조물이 외력에 견딜 수 있는 구조성능의 감소를 초래한다. 본 논문에서는 3차원 스캐너를 이용하여 철근이 부식됨에 따른 철근의 표면적을 측정하여 부식률과 표면 거칠기와의 관계를 파악하였다. 철근부식률 1~2%의 경우에서는 철근 표면적이 증가하는 것으로 나타났다. 이는 동일 범위내에서 철근의 부착강도가 증가한 기존의 실험결과와 매우 유사한 결과를 나타낸다. 철근부식률 2% 이상에서는 오히려 표면적이 감소하였으며, 이는 단면적 손실로 인한 기존 부착강도 실험과 부합되는 결과를 나타냈다.

Effect of roughness on interface shear behavior of sand with steel and concrete surface

  • Samanta, Manojit;Punetha, Piyush;Sharma, Mahesh
    • Geomechanics and Engineering
    • /
    • 제14권4호
    • /
    • pp.387-398
    • /
    • 2018
  • The present study evaluates the interface shear strength between sand and different construction materials, namely steel and concrete, using direct shear test apparatus. The influence of surface roughness, mean size of sand particles, relative density of sand and size of the direct shear box on the interface shear behavior of sand with steel and concrete has been investigated. Test results show that the surface roughness of the construction materials significantly influences the interface shear strength. The peak and residual interface friction angles increase rapidly up to a particular value of surface roughness (critical surface roughness), beyond which the effect becomes negligible. At critical surface roughness, the peak and residual friction angles of the interfaces are 85-92% of the peak and residual internal friction angles of the sand. The particle size of sand (for morphologically identical sands) significantly influences the value of critical surface roughness. For the different roughness considered in the present study, both the peak and residual interaction coefficients lie in the range of 0.3-1. Moreover, the peak and residual interaction coefficients for all the interfaces considered are nearly identical, irrespective of the size of the direct shear box. The constitutive modeling of different interfaces followed the experimental investigation and it successfully predicted the pre-peak, peak and post peak interface shear response with reasonable accuracy. Moreover, the predicted stress-displacement relationship of different interfaces is in good agreement with the experimental results. The findings of the present study may also be applicable to other non-yielding interfaces having a similar range of roughness and sand properties.

Improvement of joining strength between aluminum alloy and polymer by two - step anodization

  • Lee, Sung-Hyung;Yashiro, Hitoshi;Kure-Chu, Song-Zhu
    • 한국표면공학회지
    • /
    • 제53권4호
    • /
    • pp.144-152
    • /
    • 2020
  • In the manufacturing process of joining of aluminum alloy and polymer, the strength of the metal-polymer joining is greatly influenced by the nanostructure of the oxide film. In this study, we investigated the dependence of joining strength on the thickness, structure, pore formation and surface roughness of the formed film. After the two-step anodization process, the surface oxide layer became thinner and rougher resulting in higher joining strength with the polymer. More specifically, after the two-step anodization, the surface roughness, Ra increased from 2.3 to 3.2 ㎛ with pore of three-dimensional (3D) nanostructure, and the thickness of the oxide film was thinned from 350 to 250 nm. Accordingly, the joining strength of the aluminum alloy with polymer increased from 23 to 30 MPa.

Effect of surface treatments on shear bond strength of resin composite bonded to CAD/CAM resin-ceramic hybrid materials

  • Gungor, Merve Bankoglu;Nemli, Secil Karakoca;Bal, Bilge Turhan;Unver, Senem;Dogan, Aylin
    • The Journal of Advanced Prosthodontics
    • /
    • 제8권4호
    • /
    • pp.259-266
    • /
    • 2016
  • PURPOSE. The purpose of this study was to assess the effect of surface treatments on shear bond strength of resin composite bonded to thermocycled and non-thermocycled CAD/CAM resin-ceramic hybrid materials. MATERIALS AND METHODS. 120 specimens ($10{\times}10{\times}2mm$) from each material were divided into 12 groups according to different surface treatments in combination with thermal aging procedures. Surface treatment methods were airborne-particle abrasion (abraded with 50 micron alumina particles), dry grinding (grinded with $125{\mu}m$ grain size bur), and hydrofluoric acid (9%) and silane application. According to the thermocycling procedure, the groups were assigned as non-thermocycled, thermocycled after packing composites, and thermocycled before packing composites. The average surface roughness of the non-thermocycled specimens were measured after surface treatments. After packing composites and thermocycling procedures, shear bond strength (SBS) of the specimens were tested. The results of surface roughness were statistically analyzed by 2-way Analysis of Variance (ANOVA), and SBS results were statistically analyzed by 3-way ANOVA. RESULTS. Surface roughness of GC were significantly lower than that of LU and VE (P<.05). The highest surface roughness was observed for dry grinding group, followed by airborne particle abraded group (P<.05). Comparing the materials within the same surface treatment method revealed that untreated surfaces generally showed lower SBS values. The values of untreated LU specimens showed significantly different SBS values compared to those of other surface treatment groups (P<.05). CONCLUSION. SBS was affected by surface treatments. Thermocycling did not have any effect on the SBS of the materials except acid and silane applied GC specimens, which were subjected to thermocycling before packing of the composite resin.

치과 캐드캠 시스템에서 사용되는 고분자 수복재료들의 표면특성과 접착양상 (Surface characteristics and bonding performance of polymer restorative materials for dental CAD/CAM systems)

  • 김재홍;김기백
    • 대한치과기공학회지
    • /
    • 제41권3호
    • /
    • pp.203-209
    • /
    • 2019
  • Purpose: The purpose of this study was to investigate the mechanical properties of polymer prosthetic and restorative materials for dental CAD/CAM using two test method; surface characteristics and shear bond strength. Methods: Commercialized CAD/CAM polymer blanks were investigated; One kinds of PMMA, and one PEKK blanks. A total of 20 PMMA and PEKK specimens were prepared, and each group was divided into 10 specimens. Average surface roughness was observed under surface profilometer. The contact angle was measured with a surface electrooptics. The bond strength was evaluated by a universal testing machine at a crosshead speed of 5mm/min. The data were statistically analyzed using independent t-test and Fisher's exact test(P<0.05). Results: The PMMA and PEKK group showed a significant difference in the shear bond strength with the composite resin(P<0.05). The surface roughness of the PEKK group was higher than that of the PMMA group. The fracture mode were observed in PEKK groups with 50% showing adhesive remnant index score. Conclusion: PEEK is used as substructure material and composite veneering material is applied. PEKK resins will contribute to the development of successful products that will provide structural and aesthetic satisfaction.

Quantification of Surface Topography Using Digital Image Analysis

  • Lee, Seok-Won
    • 한국지반공학회논문집
    • /
    • 제15권3호
    • /
    • pp.131-149
    • /
    • 1999
  • 여러 연구들을 통하여 표면 거칠음 정도가 접촉면 전단력에 매우 중요함이 밝혀졌으며, 따라서 그 역할을 충분히 이해하기 위해서는 표면 거칠음 정도가 정확히 정량화 되어야 한다. 이 연구에서는 표면 형상을 정량화하기 위하여 일반적으로 사용되는 표면 거칠기 매개변수와 측정방법에 대하여 여러 참고문헌들을 검토하였다. 이것을 바탕으로 Normalized Roughness Parameter, $R_n$ (Uesugi and Kishida, 1986), Profile Roughness Parameter, $R_L$, 그리고 Surface Roughness Parameter, $R_n$(Dove and Frost, 1996)가 적합한 표면 거칠기 매개변수로 선택되었으며, 디지털 이미지 분석 시스템을 이용한 Optical Profile Microscopy(OPM) 방법을 표면 거칠음 측정방법으로 선택하였다 이 실험장비를 이용하여 일반적으로 사용되는 지오멤브레인의 표면과 표면 패턴을 대표하는, 표면이 매끄러운 것과 3가지 종류의 돌기형 HDPE 지오멤브레인을 사용하여, 전단 시험에 사용되지 않았던 지오멤브레인과 전단시험후의 지오멤브레인에 대한 표면 거칠음 정도의 정량화 작업을 수행하였다. 그 결과, $R_L과\; R_S$값은 이 연구에 사용된 지오멤브레인의 거칠음 정도를 충분한 측정범위로 표현할 수 있는 매개변수로 밝혀졌으나, $R_n$값은 충분히 표면 거칠음 정도의 차이를 표현하기에는 부족하게 매우 좁은 변화 범위를 나타내었다. 이 연구는 접촉면에서 표면 거칠음 정도가 접촉면 전단력에 미치는 영향을 조사하고자 우선적으로 표면 거칠음 정도의 정량화 작업을 연구한 것이다.

  • PDF

화강석 건조물의 표면 거칠기별 초음파속도법에 의한 강도 추정 (Granite Strength Estimation of Construction Considering Surface Roughness Effect on Ultrasonic Velocity Method)

  • 김정섭;신용석;김정훈
    • 한국건축시공학회지
    • /
    • 제10권1호
    • /
    • pp.137-145
    • /
    • 2010
  • 석조 건조물의 역학적 성질은 일반적으로 석재 강도의 관점에서 설명된다. 강도를 측정하기 위해서 문화재의 훼손이 없는 초음파속도의 측정 방법이 이용되고 있다. 현재 시행되고 있는 초음파속도법은 표면거칠기, 석재 두께 등에 대한 보정을 실시하지 않고 있는 실정이다. 그리고 그리스와 같은 접촉재 사용으로 문화재의 표면에 오염이 발생할 수 있다. 따라서 본 연구에서는 석조 건조물의 강도를 간접법으로 추정하기 위하여 석재 표면거칠기, 석재두께, 접촉재의 종류, 초음파속도 측정방법 등을 주변수로 석재 간접법 강도 추정식을 제안한다. (1) 잔다듬 석재 초음파속도법에 의한 강도 추정식 : $f_{su}=19.1{\times}V_p+18.3(R^2=76.0)$ (2) 거친다듬 석재 초음파속도법에 의한 강도 추정식 : $f_{su}=7.9{\times}V_p+64.6(R^2=69.8)$.

A Study on the Surface Integrity of Grinding of Ceramics

  • Lee, Jongchan;Whan Chio;Woojin Sim;Yongky Kang;Eunha Hwang;Lee, Taewon;Sangbaek Ha;Kim, Sunghun
    • 한국공작기계학회논문집
    • /
    • 제10권3호
    • /
    • pp.90-96
    • /
    • 2001
  • Experimental investigations were carried out to find the characteristics of grinding of ceramics. Grinding mechanisms of ceramics were inspected through the microscopic examination. It has been found that the specific grinding energy of ceramics is relatively low as compared to that of steels. The specific grinding energy affects the surface roughness and the residual stress of ground surface. the experimental results indicate that the rougher surface finish and higher compressive residual stress are obtained at lower specific grinding energy. The surface roughness and the residual stress of the ground surface have significant effects on the strength of ground piece of ceramics.

  • PDF