• Title/Summary/Keyword: streamline method

Search Result 172, Processing Time 0.031 seconds

Throughflow Analysis of Axial Flow Turbines - Comparison of Multi-streamline and Mean Line Methods - (축류터빈의 관통유동해석 - 다유선해석과 평균반경해석의 비교분석 -)

  • Kim, Tong Seop
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.8
    • /
    • pp.1173-1182
    • /
    • 1998
  • A throughflow analysis program for axial flow turbines is constructed, which can handle not only the two-dimensional multi-streamline (streamline curvature) method but also the one-dimensional mean line method. Calculations are performed for single stage and multi-stage axial flowturbines. For a wide operating range, the performance and flow field calculated by the present streamline curvature method are close enough to the test data. It is also revealed for the single stage turbine that the present analysis leads to far better correspondence with the experiment than other researchers" throughflow analyses. A special focus is put on the comparison of the results between the streamline curvature analysis and the mean line analysis. It is found that the mean line analysis can not predict the performance for highly off-designed conditions as accurately as the streamline curvature method, which shows the importance of considering the spanwise variation of loss and flow.

Development and Application of Streamline Analysis Method (유선 분석법의 개발 및 적용)

  • Kim Tae Beom;Lee Chihyung;Cheong Jae-Yeol
    • Journal of Soil and Groundwater Environment
    • /
    • v.28 no.6
    • /
    • pp.9-15
    • /
    • 2023
  • In order to properly evaluate the spatio-temporal variations of groundwater flow, the data obtained in field experiments should be corroborated into numerical simulations. Particle tracking method is a simple simulation tool often employed in groundwater simulation to predict groundwater flow paths or solute transport paths. Particle tracking simulations visually show overall the particle flow path along the entire aquifer, but no previous simulation studies has yet described the parameter values at grid nodes around the particle path. Therefore, in this study, a new technical approach was proposed that enables acquisition of parameters associated with particle transport in grid nodes distributed in the center of the particle path in groundwater. Since the particle tracking path is commonly referred to as streamline, the algorithm and codes developed in this works designated streamline analysis method. The streamline analysis method can be applied in two-dimensional and three-dimensional finite element or finite difference grid networks, and can be utilized not only in the groundwater field but also in all fields that perform numerical modeling.

Method for Importance based Streamline Generation on the Massive Fluid Dynamics Dataset (대용량 유동해석 데이터에서의 중요도 기반 스트림라인 생성 방법)

  • Lee, Joong-Youn;Kim, Min Ah;Lee, Sehoon
    • The Journal of the Korea Contents Association
    • /
    • v.18 no.6
    • /
    • pp.27-37
    • /
    • 2018
  • Streamline generation is one of the most representative visualization methods to analyze the flow stream of fluid dynamics dataset. It is a challenging problem, however, to determine the seed locations for effective streamline visualization. Meanwhile, it needs much time to compute effective seed locations and streamlines on the massive flow dataset. In this paper, we propose not only an importance based method to determine seed locations for the effective streamline placements but also a parallel streamline visualization method on the distributed visualization system. Moreover, we introduce case studies on the real fluid dynamics dataset using GLOVE visualization system to evaluate the proposed method.

A Practical Method to Determine the Die Shape using a Streamline in Axisymmetric Extrusion (축대칭 압출에서의 유동경로를 이용한 실용적 금형설계)

  • 윤상헌
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2000.04a
    • /
    • pp.79-82
    • /
    • 2000
  • A new simple method to determined the die shape using a streamline in extrusion is presented. This method assumes that a billet deforms naturally to minimize the energy input for the given process condition. Then an optimal die shape can be determined along a streamline. Extrusion operations with two types of materials strain-hardening material and strain-rate hardening material are examined using this method. Prediction with the proposed method are compared with those by the previous optimizing model to show its efficiency.

  • PDF

Practical Determination of the Die Shape Using a Streamline in Axisymmetric Extrusion (유동경로를 이용한 축대칭 금형 형상의 실용적 ,결정)

  • 이용신
    • Transactions of Materials Processing
    • /
    • v.10 no.2
    • /
    • pp.111-114
    • /
    • 2001
  • A new, simple method to determine the die shape using a streamline in extrusion is presented. This method assumes that a billet deforms naturally to minimize the energy input for the given process condition. Then, an optimal die shape can be determined along a streamline. Extrusion operations with two types of materials, strain-hardening material and strain-rate hardening material, are examined using this method. Predictions with the proposed method are compared with those by the previous optimizing model to show its efficiency.

  • PDF

A Study on CFD Methodology of the Performance Predictionfor the UV Disinfection Reactor (자외선 소독기 성능 예측을 위한 CFD 해석 기법 연구)

  • Kim, Hyunsoo;Bak, Jeonggyu;Lee, Kunghyuk;Cho, Jinsoo
    • The KSFM Journal of Fluid Machinery
    • /
    • v.17 no.6
    • /
    • pp.44-51
    • /
    • 2014
  • The disinfection method using UV has emerged as photodissociation in water disinfection. In order to predict performance for UV disinfection, CFD analysis was performed due to saving cost. Most CFD studies of UV reactor have used particle tracking method. However it demands additional analysis time, computing resource and phase besides working fluid. In this paper, pathogenic microorganisms' route is assumed to streamline of fluid to save computing time. the computational results are in good agreement with experimental results. The results of streamline method are compared with the particle tracking method. In conclusion, the effectiveness of streamline method for UV disinfection are confirmed.

Flow Field Analysis on the Stagnation Streamline of a Blunt Body

  • Lee, Chang-Ho
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.2
    • /
    • pp.149-156
    • /
    • 2016
  • The hypersonic flow on the stagnation streamline of a blunt body is analyzed with quasi one-dimensional (1-D) Navier-Stokes equations approximated by adopting the local similarity to the two-dimensional (2-D)/axisymmetric Navier-Stokes equations. The governing equations are solved using the implicit finite volume method. The computational domain is confined from the stagnation point to the shock wave, and the shock fitting method is used to find the shock position. We propose a boundary condition at the shock, which employs the shock wave angle in the vicinity of the stagnation streamline using the shock shape correlation. As a result of numerical computation conducted for the hypersonic flow over a sphere, the proposed boundary condition is shown to improve the accuracy of the prediction of the shock standoff distance. The quasi 1-D Navier-Stokes code is efficient in computing time and is reliable for the flow analysis along the stagnation streamline and the prediction of heat flux at the stagnation point in the hypersonic blunt body flow.

An Analysis of Fluid Flow Using the Streamline Upwinding Finite Element Method (유선상류 유한요소법을 이용한 유동장의 해석)

  • 최형권;유정열
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.3
    • /
    • pp.624-634
    • /
    • 1994
  • A numerical method which combines equal-order velocity-pressure formulation originated from SIMPLE algorithm and streamline upwinding method has been developed. To verify the proposed numerical method, we considered the lid-driven cavity flow and backward facing step flow. The trend of convergence history is stable up to the error criterion beyond which the maximum value of error is oscillatory due4 to the round-off error. In the present study, all results were obtained with the single precision calculation up to the given error criterion and it was found to be sufficient for our purpose. The present results were then compared with existing experimental results using laser doppler velocimetry and numerical results using finite difference method and mixed interpolation finite element method. It has been shown that the present method gives accurate results with less memories and execution time than the coventional finite element method.

Mean Streamline Analysis for Performance Prediction of Cross- Flow Fans

  • Kim, Jae-Won;Oh, Hyoung-Woo
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.8
    • /
    • pp.1428-1434
    • /
    • 2004
  • This paper presents the mean streamline analysis using the empirical loss correlations for performance prediction of cross-flow fans. Comparison of overall performance predictions with test data of a cross-flow fan system with a simplified vortex wall scroll casing and with the published experimental characteristics for a cross-flow fan has been carried out to demonstrate the accuracy of the proposed method. Predicted performance curves by the present mean streamline analysis agree well with experimental data for two different cross-flow fans over the normal operating conditions. The prediction method presented herein can be used efficiently as a tool for the preliminary design and performance analysis of general-purpose cross-flow fans.