• 제목/요약/키워드: streamline analysis method

검색결과 76건 처리시간 0.027초

콘크리트댐 하부에서의 침투특성 (Seepage Characteristics under Concrete Dam)

  • 이승현
    • 한국산학기술학회논문지
    • /
    • 제13권6호
    • /
    • pp.2773-2778
    • /
    • 2012
  • 콘크리트댐 하부지반에서의 침투시 유선망 특성을 파악하고자 다양한 흐름조건에 대하여 유한차분식을 정식화하고 해석에 적용하였다. 댐하부에 차수벽이 없는 경우 불균질 지반에서의 등수두선에 있어서는 투수계수가 상대적으로 큰 영역에서 등수두선의 경사가 크게 된다. 댐하부지반의 좌측에서 우측으로의 침투에 있어 차수벽을 댐의 중앙 하부와 좌측 끝단 하부에 설치하는 경우에 대하여 침투해석을 실시하였다. 해석결과를 통해 볼 때 하류측 차수벽면을 따르는 흐름에 있어 차수벽을 좌측에 설치한 경우의 유속이 차수벽을 중앙에 설치한 경우의 유속에 비하여 감소함을 알 수 있고 차수벽 우측지반내의 흐름에 있어서는 차수벽을 좌측에 설치한 경우의 유선이 상대적으로 수평선에 가깝다.

축류형 3차원 터빈익형의 성능시험장치 개발 (Development of a Test Rig for Three-Dimensional Axial-Type Turbine Blade)

  • 장범익;김동식;조수용;김수용
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 추계학술대회논문집B
    • /
    • pp.453-460
    • /
    • 2000
  • A test rig is developed for performance test of 1 stage axial-type turbine which is designed by meanline analysis, streamline curvature method, and blade design method using configuration parameters. The purpose of this study is to find the best configuration parameters for designing a high efficiency axial-type turbine blade. To measure the efficiency of turbine stage, a dynamo-meter is installed. Two different stators which are manufactured as an integrated type are developed, and a rotor blade and 5 sets disc are developed for setting different stagger angle. The tip and hub diameters of the test turbine are 300 and 206.4mm, respectively. The rotating speed is 1800RPM, and the extracted power is 2.5kW. Flow coefficient is 1.68 and the reaction factor at meanline is 0.373. The number of stator and rotor of test turbine are 31 and 41, respectively. The Mach number of stator exit flow near hub is 0.164.

  • PDF

6기통 가솔린 엔진에 장착된 촉매변환기 내의 3차원 비정상 유동특성 해석 (Three Dimensional Unsteady Flow Characteristics inside the Catalytic Converter of 6 Cylinder Gasoline Engine)

  • 정수진;김우승
    • 한국자동차공학회논문집
    • /
    • 제6권4호
    • /
    • pp.108-120
    • /
    • 1998
  • A theoretical study of three-dimensional unsteady compressible non-reacting flow inside double flow of monolith catalytic converter system attached to 6-cylinder engine was performed for the achievement of performance improvement, reduction of light-off time, and longer service life by improving the flow distribution of pulsating exhaust gases. The differences between unsteady and steady-state flow were evaluated through the numerical computations. To obtains the boundary conditions to a numerical analysis, one dimensional non-steady gas dynamic calculation was also performed by using the method of characteristics in intake and exhaust system. Studies indicate that unsteady representation is necessary because pulsation of gas velocity may affect gas flow uniformity within the monolith. The simulation results also show that the level of flow maldistribution in the monolith heavily depends on curvature and angles of separation streamline of mixing pipe that homogenizes the exhaust gas from individual cylinders. It is also found that on dual flow converter systems, there is severe interactions of each pulsating exhaust gas flow and the length of mixing pipe and junction geometry influence greatly on the degree of flow distribution.

  • PDF

Counter-Rotating Streamwise Vortex Formation in the Turbine Cascade with Endwall Fence

  • 고성룡;문영준
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 1999년도 춘계 학술대회논문집
    • /
    • pp.155-161
    • /
    • 1999
  • The three-dimensional turbulent cascade flows with and without endwall fences are numerically investigated by solving the incompressible Navier-Stokes equations with a high-Reynolds number $k-{\varepsilon}$ turbulence closure model. A projection method based algorithm is used in the finite-volume formulation, with the second order upwind-differencing scheme for the convective terms. First, assessments on accuracy of the present method are made by comparing the static pressure distributions at the mid-span of the cascade with measured data, and also by confirming the experimental observations on the choice of an optimal fence height for the secondary flow control. In understanding the three-dimensional nature of the secondary flow in turbine cascade, the limiting streamline patterns and the static pressure contours at the suction surface of the blade as well as on the cascade endwall are employed to visualize the effectiveness of the endwall fence for the secondary flow control. Analysis on the streamwise vorticity contour maps along the cascade with the three-dimensional representation of their iso-surfaces reveals the strucuture of the complicated vortical flow in the turbine cascade with endwall fence, and also leads to an understanding on formation of the counter-rotating streamwise vortex over the endwall fence, in explaining the mechanisms of controlling the secondary flow and also for the proper selection of an optimal fence height.

  • PDF

원심 펌프의 최적 설계 (Design Optimization of Centrifugal Pumps)

  • 오형우;정명균;김상철;양근영;하진수
    • 대한기계학회논문집B
    • /
    • 제23권2호
    • /
    • pp.254-261
    • /
    • 1999
  • An optimal design code for centrifugal pumps has been developed to determine geometric and fluid dynamic variables under appropriate design constraints. The optimization problem has been formulated with a nonlinear objective function to minimize one, two or all of the fluid dynamic losses, the net positive suction head required and the product price of a pump stage depending on the weighting factors selected as the design compromise. The optimal solution Is obtained by means of the Hooke and Jeeves direct search method. The performance analysis Is based on the mean streamline analysis using the present state-of-the-art loss correlations. The optimized efficiency and design variables of centrifugal pumps are presented in this paper as a function of non-dimensional specific speed in the range, $0.5{\leq}N$, ${\leq}1.3$. The diagrams presented herein can be used efficiently in the preliminary design phase of centrifugal pumps.

NUMERICAL ANALYSIS FOR PRANDTL NUMBER DEPENDENCY ON NATURAL CONVECTION IN AN ENCLOSURE HAVING A VERTICAL THERMAL GRADIENT WITH A SQUARE INSULATOR INSIDE

  • Lee, Jae-Ryong;Park, Il-Seouk
    • Nuclear Engineering and Technology
    • /
    • 제44권3호
    • /
    • pp.283-296
    • /
    • 2012
  • The natural convection in a horizontal enclosure heated from the bottom wall, cooled at the top wall, and having a square adiabatic body in the center is studied. Three different Prandtl numbers (0.01, 0.7 and 7) are considered for the investigation of the effect of the Prandtl number on natural convection. Adiabatic boundary conditions are employed for the side walls. A two-dimensional solution for unsteady natural convection is obtained, using an accurate and efficient Chebyshev spectral methodology for different Rayleigh numbers varying over the range of $10_3$ to $10_6$. It had been experimentally reported that the heat transfer mode becomes oscillatory when Pr is out of a specific Pr band beyond the critical Ra. In this study, we reproduced this phenomenon numerically. It was found that when Ra=$10_6$, only the case for intermediate Pr (=0.7) reached a non-changing steady state and the low and high Pr number cases (Pr=0.01 and 7) showed a periodically oscillatory fashion hydrodynamically and thermally. The variation of time- and surface-averaged Nusselt numbers on the hot and cold walls for different Rayleigh numbers and Prandtl numbers are presented to show the overall heat transfer characteristics in the system. Further, the isotherms and streamline distributions are presented in detail to compare the physics related to their thermal behavior.

유한요소법에 의한 2차원 하천 흐름 모형의 개발 (Two-Dimensional River Flow Analysis Modeling By Finite Element Method)

  • 한건연;김상호;김병현;최승용
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2006년도 학술발표회 논문집
    • /
    • pp.425-429
    • /
    • 2006
  • The understanding and prediction of the behavior of flow in open channels are important to the solution of a wide variety of practical flow problems in water resources engineering. Recently, frequent drought has increased the necessity of an effective water resources control and management of river flows for reserving instream flow. The objective of this study is to develop an efficient and accurate finite element model based on Streamline Upwind/Petrov-Galerkin(SU/PG) scheme for analyzing and predicting two dimensional flow features in complex natural rivers. Several tests were performed in developed all elements(4-Node, 6-Node, 8-Node elements) for the purpose of validation and verification of the developed model. The U-shaped channel of flow and natural river of flow were performed for tests. The results were compared with these of laboratory experiments and RMA-2 model. Such results showed that solutions of high order elements were better accurate and improved than those of linear elements. Also, the suggested model displayed reasonable velocity distribution compare to RMA-2 model in meandering domain for application of natural river flow. Accordingly, the developed finite element model is feasible and produces reliable results for simulation of two dimensional natural river flow. Also, One contribution of this study is to present that results can lead to significant gain in analyzing the accurate flow behavior associated with hydraulic structure such as weir and water intake station and flow of chute and pool.

  • PDF

보텍스 쉐딩에 의한 얕은 직사각형통 내에서의 유동특성 (The Flow Characteristics in a Shallow Rectangular Tank by Vortex Shedding)

  • 서용권;문종춘
    • 대한기계학회논문집
    • /
    • 제17권8호
    • /
    • pp.2122-2130
    • /
    • 1993
  • A numerical and experimental study has been performed on the flow in a shallow rectangular tank accompanying a vortex shedding. The model is composed of a rectangular tank with a vertical plate with a length half the width of the tank. The tank is subject to a horizontal sinusoidal oscillation. The numerical analysis shows that the pattern of vortex shedding changes considerably when the Reynolds number $R_e$ is varied from 500 to 7500. It is symmetric for $R_e$ <1500 and asymmetric for $R_e$ > 1500. The kinetic energies of the right-hand and left-hand sides of the vertical plate are used to quantify the degree of the asymmetry. Experimental visualization is carried out at $R_e$ = 3876 and 52000. The development of the streamline pattern at $R_e$ = 3876 is in closer agreement with the numerical result at $R_e$ = 1000 than that at $R_e$ =3876. The asymmetric pattern is observed at $R_e$ = 52000.

Heat Tracing이 있는 수평배관 내부 열성층 유동의 비정상 2차원 열전달 해석 (An Analysis of Unsteady 2-D Heat Transfer of the Thermal Stratification Flow inside Horizontal Pipe with Electrical Heat Tracing)

  • 정일석;송우영
    • 에너지공학
    • /
    • 제6권2호
    • /
    • pp.119-128
    • /
    • 1997
  • 수평배관의 열성층 유동을 완화하기 위하여 아래부분에 Heat Tracing을 한 수평배관의 외부 가열에 의한 열성층 유동과 열전달 특성을 수치적으로 해석하기 위하여 비정상 2차원 모델을 이용하였다. 무차원 지배방정식은 제어체적방법과 SIMPLE 알고리즘을 사용하여 해를 구하였다. Heat Tracing이 있는 수평배관 내부 열성층 유동의 등온선, 유선분포, Nusselt수, 온도 분포를 해석하였다. 무차원 시간 1,500에서 최대 무차원 온도차가 0.424로 계산되어졌고 무차원 시간 9,000 이후에는 열성층 현상이 없어졌다.

  • PDF

주름진 판형 열교환기의 성능향상에 관한 연구 (A Study on the Heat Tranfer Enhancement of Heat Exchangers with Corrugated Wall)

  • 오윤영;유성연;고성호
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2002년도 학술대회지
    • /
    • pp.115-118
    • /
    • 2002
  • The present study deals with CFD analysis of a plastic heat exchanger with corrugated wall. This exchanger has sinusoidal corrugations, and the flow through the exchanger is three dimensional. In addition, CFX-5.4, a commercial code utilizing unstructured mesh, was used as a computational method for solving RANS(Reynolds-Averaged Navier-Stokes) equations, and the applied turbulence model is $k-{\varepsilon}$ model. The factors to affect the efficiency of a plastic heat exchanger are heat conductivity, flow characteristics and so on. For those two factors, heat conductivity is fixed by the wall material. Therefore, the How along the corrugation affects the efficiency more, provided the same material. In conclusion, the heat transfer enhancement of a plastic heat exchanger with corrugated wall can be recognized from the flow characteristics such as velocity streamline, local heat transfer coefficient, velocity contour, and pressure contour. To confirm the results, both of the measured and the computational data for pressure loss were compared with each other, and they were identical.

  • PDF