• Title/Summary/Keyword: streamline

Search Result 423, Processing Time 0.025 seconds

Review of Experimental Studies on Swirling Flow in the Circular Tube using PIV Technique

  • Chang, Tae-Hyun;Nah, Do-Baek;Kim, Sang-Woo
    • Journal of the Korean Society of Visualization
    • /
    • v.7 no.1
    • /
    • pp.21-28
    • /
    • 2009
  • The study of swirling flow is of technical and scientific interest because it has an internal recirculation field, and its tangential velocity is related to the curvature of streamline. The fluid flow for tubes and elbow of heat exchangers has been studied largely through experiments and numerical methods, but studies about swirling flow have been insufficient. Using the particle image velocimetry(PTV) method, this study found the time averaged velocity distribution with swirl and without swirl along longitude sections and the results appear to be physically reasonable. In addition, streamwise mean velocity distribution was compares with that of other. Furthermore, other experimental investigation was performed to study the characteristics of turbulent water flow in a horizontal circular tube by using liquid crystal. 2D PIV technique is employed for velocity measurement and liquid crystal is used for heat transfer experiments in water. Temperature visualization was made quantitatively by calibrating the colour of the liquid crystal versus temperature using various approaches.

Numerical study on the two-dimensional stepped wall jet (단이 진 2차원 벽면분류에 대한 수치 해석)

  • 윤순현;엄윤섭;정명균
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.4
    • /
    • pp.865-875
    • /
    • 1988
  • A two-dimensional stepped wall jet was numerically investigated by applying three different models : One is the standard k-.epsilon. and the other is the modified k-.epsilon. model which takes account of the streamline curvature effect by modifying the Reynolds shear stress and a source term in the dissipation equation, and a third is curvature dependent third-order correlation model. In order to test the influences of the numerical result, both the upwind scheme and the skew-upwind scheme were sued for the computations. By comparing the numerical results with available experiments, it was found that the modified k-.epsilon. model gives best overall prediction accuracy only when the numerical diffusion is eliminated by using the skew-upwind scheme. The numerical scheme was found to have more pronounced effect on the accuracy of the turbulence computation than the turbulence models.

Aerodynamic Analysis and Design of Inline-Duct Fan (관류익형송풍기의 공력해석 및 설계)

  • Guo En-Min;Kim Kwang-Yong;Seo Seoung-Jin
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.639-642
    • /
    • 2002
  • A tubular centrifugal fin is designed by using various methods of analysis and design. A preliminary design method based on empirical optimum curves for centrifugal fin is used to determine the geometric parameters for tubular centrifugal fan. And, Quasi-3D streamline curvature duct-flow analysis is used to provide the primary position of streamlines and spanwise distribution of flow angle f3r generation of blade geometry based on S1 surface. Three-dimensional CFD solution then is obtained to optimize the blade design. Constriction of flow path in the region of impeller, backward swept blade, and central cone, which are introduced to improve the design, successfully remove or suppress the vortices downstream of the impeller.

  • PDF

Performance Prediction of Centrifugal Compressor Impellers using Quasi-Three-Dimensional Analysis (준삼차원 방법에 의한 원심 압축기의 성능예측)

  • Ahn, S.J.;Oh, H.W.;Kim, K.Y.
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.628-633
    • /
    • 2001
  • This paper presents analysis of the flows through three different types of radial compressor by using quasi-three-dimensional analysis method. The method obtains two-dimensional solution for velocity distribution on meridional plane, and then calculates approximately the static pressure distributions on blade surfaces. Finite difference method is used for the solutions of governing equations. The compressors have low level compression-ratio and 12 straight radial blades with no sweepback. The results are compared with experimental data and the results of inviscid analysis with finite element method. It can be concluded that the agreement is good for the cases where viscous effects are not dominant.

  • PDF

Numerical Analysis of Turbulent Flow and Heat Transfer in a Rectangular Duct with a 180° Bend Degree (직사각단면을 갖는 180°곡관내의 난류 유동및 열전달에 관한 수치해석적 연구)

  • Choi, Y.D.;Moon, C.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.6 no.4
    • /
    • pp.325-336
    • /
    • 1994
  • A numerical simulation of velocity and temperature fields and Nusselt number distributions is performed by using the algebraic stress model (ASM) for the velocity profiles and low Reynolds number ${\kappa}-{\varepsilon}$ model and the algebraic heat flux model(AHFM) for turbulent heat transfer in a $180^{\circ}$ bend with a constant wall heat flux. In the low Reynolds number ${\kappa}-{\varepsilon}$ model, turbulent Prandtl number is modified by considering the streamline curvature effect and the non-equilibrium effect between turbulent kinetic energy production and dissipation rate. Every heat flux term presented in the transport equation of turbulent heat flux is reduced to algebraic expressions in a way similar to algebraic stress model. Also. in the wall region, low Reynods number algebraic heat flux model(AHFM) is applied.

  • PDF

A numerical study on the flow characteristics in cylinder (실린더 내의 유동특성에 관한 수치적 연구)

  • Kim, Chong-Eok;Kim, Yang-Sul;Park, Sang-Kyoo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.7 no.1
    • /
    • pp.28-36
    • /
    • 1990
  • In this paper, the flow field with steady, axisymmetric flow characteristics in cylinder has been numerically investigated. The prediction of flow in cylinder was compared to experimental result. The turbulence closure being applied was K-${\epsilon}$ model and numerical scheme was Hybrid and Power-law scheme. The results of numerical computation showed some deviation from exper- imental data in the in cial region of cylinder, where streamline curvature is significant. However, the computational results agree qualitatively well with Mores's experimental results and the difference between Hybrid and Power-law schows similar results

  • PDF

The Turbulent flow analysis by the Finite Element Method (유한요소법을 이용한 난류유동해석)

  • 황상무
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03b
    • /
    • pp.253-256
    • /
    • 1999
  • The Streamline Upwind Petrov-Galerkin(SUPG) finite element method is used to solve the two-dimensional laminar and turbulent flow. The flow is simulated by averaged Navier-Stokes equations with a penalty function approach and the lograithmic(k-$\varepsilon$) turbulent model is employed to take into account its turbulent behavior. The near-wall viscous sub-layer model is employed to approach the dominant viscous effects in the near wall zones. To find a good-enough initial guess of the Newton-Raphson iteration solving Nonlinear Matrix the Incremental method is considered for momentum and the Incomplete logarithmic turbu-lent equations for Turbulence. The validation of our method is investigated in comparision with published experimental data.

  • PDF

A study on the flow characteristics of non-Newtonian fluid flows in dividing tubes (분기관에서 비뉴턴 유체의 유동특성에 관한 연구)

  • 이행남;하옥남;전운학
    • Journal of Ocean Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.118-127
    • /
    • 1996
  • Flow patterns of fluid flow in dividing trbe were visualized, and the energy losses due to dividing were measured in laminar dividing flow of the viscoelastic fluid and its solution in tube junctions with dividing angles of $90^{\circ}$, $60^{\circ}$, $65^{\circ}$ and $15^{\circ}$. Two separation zones were observed. swelling of the streamline to the main tube or to lateral tube was observed. The sizes of the separation zones depend on the Reynolds number, the dividing angle and the dividing flow rate. The energy loss coefficients decrease with increasing Reynolds number, but their decreasing rate decreases with increasing Reynolds number as the sizes of the separation zone increase. The effect of dividing angle on the energy loss coefficients and separation is greater for main tube than for the lateral tube.

  • PDF

RDF Based Logistics Data Modeling and Applications in the Ubiquitous Environment (RDF(Resource Description Framework) 기반 물류 정보 모델 구축 및 응용에 관한 연구)

  • Jun, Hong-Bae;Suh, Hyo-Won
    • IE interfaces
    • /
    • v.21 no.2
    • /
    • pp.177-188
    • /
    • 2008
  • Recently, due to emerging technologies such as radio frequency identification(RFID), global positioning system(GPS), and wireless mobile communication technologies, it is possible to build up the infrastructure for tracking and tracing product logistics data at any place and at any time. However, for implementing the infrastructure, it is necessary to develop a suitable management method for product logistics data. To this end, this study deals with a resource description framework(RDF) based modeling and application method for product logistics data in the ubiquitous environment. It will give us the capability to control product logistics data, which leads to streamline logistics operations.

flow analysis in Micro Channel with a Couple of Fins (박막이 부착된 마이크로 채널 내의 유동해석)

  • Jeong Jae-Tack
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.228-233
    • /
    • 2005
  • Two-dimensional Stokes flows through a micro channel with a couple of symmetric vertical fins are investigated. At far up- and down-stream from the fins, the plane Poiseuille flow exists in the channel. The slip boundary conditions are applied to take account of the Knudsen number effects. For the analysis, the method of eigen function expansion and collocation method are employed. By the results, the streamline patterns and pressure distributions are shown and the force exerted on the fin and the excess pressure drop due to the fins are determined as functions of the length of the fin and Knudsen number. It may be conjectured that the force and the excess pressure drop are almost independent of the Knudsen number.

  • PDF