• Title/Summary/Keyword: stream-aquifer exchange

Search Result 5, Processing Time 0.021 seconds

Measurement of Streambed Hydraulic Conductivity in Stream Sections in the Anseongcheon Watershed, Korea (안성천 수계 국가하천구간 하상 수리전도도 측정 시험)

  • Jeon, Seon-Keum;Lee, Il Hoon;Lee, Jeongwoo;Chung, Il-Moon;Hong, Sung Hun
    • The Journal of Engineering Geology
    • /
    • v.27 no.4
    • /
    • pp.377-382
    • /
    • 2017
  • Field experiments were conducted to estimate streambed hydraulic conductivity at 15 sites in the Anseongcheon watershed, Korea. Seepage meters and piezometers were installed in the streambed at each site to measure the amount of stream water-groundwater exchange and the hydraulic gradient. The vertical hydraulic conductivity was then calculated using Darcy's formula. The measured stream water-groundwater exchange rates were $4.08{\times}10^{-6}$ to $1.49{\times}10^{-5}m/s$, and the vertical hydraulic gradients were 0.005 to 0.145. The data suggest the streambed hydraulic conductivity to be $7.80{\times}10^{-5}$ to $1.58{\times}10^{-3}m/s$. The results show significant differences in connectivity between stream and aquifer. Quantification of the hydraulic interconnection between stream and aquifer, and evaluation of the effects of groundwater development and utilization on the streamflow require hydrogeological investigations of the connection between stream and aquifer, including the hydraulic conductivity of the streambed. Various field testing and analysis methods for hydrogeological assessment also require further improvement.

Measurements of Streambed Hydraulic Conductivity Using Drive-point Piezometers and Seepage Meters in the Upper Reaches of Anseong Stream (관입형 피조미터와 시피지미터를 이용한 안성천 상류구간 하상 수리전도도 측정)

  • Lee, Jeongwoo;Chun, Seon Geum;Yi, Myeong Jae;Kim, Nam Won;Chung, Il-Moon;Lee, Min Ho
    • The Journal of Engineering Geology
    • /
    • v.25 no.3
    • /
    • pp.413-420
    • /
    • 2015
  • Streambed hydraulic conductivity along the upper reaches of the Gongdo stage of Anseong Stream was estimated through measurements of stream-aquifer exchange rates (using a seepage meter) and vertical hydraulic gradients (using a manually driven piezometer). From the measured data, it was found out that the stream-aquifer exchange rates varied from -1.55 × 10-6 to 1.77 × 10-5 m/s, the corresponding vertical hydraulic gradient varied from -0.122 to 0.030, and the values of the streambed vertical hydraulic conductivity were estimated from 1.77 × 10-5 to 1.97 × 10-3 m/s, with variations representing local differences. The results are within the general range of streambed hydraulic conductivity values suggested by Calver (2001) and are slightly higher than values previously measured at other stream sites in Korea. The combined use of a drive-point piezometer and seepage meter (both constructed of high-strength stainless steel) is expected to be of practical use in the estimation of streambed hydraulic conductance, given the durability and portability of the instruments.

열추적자를 이용한 지하수-하천수 혼합대 연구

  • Kim Gu-Yeong;Jeon Cheol-Min;Kim Tae-Hui;Seong Hyeon-Jeong;O Jun-Ho;Kim Yong-Je;Jeong Jae-Hun;Park Seung-Gi
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2006.04a
    • /
    • pp.277-281
    • /
    • 2006
  • A study on stream-groundwater exchange was performed using head and temperature data of stream water, streambed, and groundwater. Groundwater level and temperature were obtained from multi-depth monitoring wells in small-scale watershed. In the summer time, time series of temperatrue data at streambed and groundwater were monitored for three months. In the winter time, we measured the temperature gradient between stream water and streambed. The observed data showed three typical types of temperature characteristics. First, the temperature of streambed was lower than that of stream water; second, the temperature of streambed and stream water was similar; and last, the temperature of streambed was higher than that of stream water. The interconnections between the stream and the streambed were not homogeneously distributed due to weakly developed sediments and heterogeneous bedrock exposed as bed of the stream. The temperature data may be used in formal solutions of the inverse problems to estimate groundwater flow and hydraulic conductivity.

  • PDF

Change of Groundwater-Streamflow Interaction according to Groundwater ion in a Green House Land (비닐하우스 지역의 지하수 양수에 따른 지하수-하천수 상호 유동 변화 분석)

  • Kim, Nam Won;Lee, Jeong Woo;Chung, Il Moon;Kim, Chang Hwan
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.10
    • /
    • pp.1051-1067
    • /
    • 2012
  • Increased use of water curtain facilities to keep green house warm during winter cultivation has been known to cause excessive groundwater ion which might lead to decline of groundwater level, resulting in streamflow depletion. Therefore it is required to quantitatively assess the effects of groundwater ion on the streamflow depletion such as magnitude and extent. The objective of this study is to assess the change of stream-aquifer interaction according to groundwater ion near stream. To this end, a green house cultivation land in Sooha-ri, Sindun-myun, Icheon-si, Gyonggi-do was selected as a field experimental site, and monitoring wells were established near and within stream to observe the water level and temperature changes over a long period of time. From the observed water level and temperature data, it was found that the river reach of interest changed to a losing stream pattern during the winter cultivation season due to groundwater level decline around pumping wells near the stream. The continuous exchange rates between stream and aquifer were estimated by plugging the observed water level data series into the experimental relation between head difference and exchange rate, showing the streamflow depletion by 16% of the groundwater pumping rate in Feb, 2011.

Use of a Temperature as a Tracer to Study Stream-groundwater Exchange in the Hyporheic Zone (열추적자를 이용한 지하수-하천수 혼합대 연구)

  • Kim, Kue-Young;Chon, Chul-Min;Kim, Tae-Hee;Oh, Jun-Ho;Jeoung, Jae-Hoon;Park, Seung-Ki
    • Economic and Environmental Geology
    • /
    • v.39 no.5 s.180
    • /
    • pp.525-535
    • /
    • 2006
  • A study on stream-groundwater exchange was performed using head and temperature data of stream water, streambed, and groundwater. Groundwater level and temperature were obtained from multi-depth monitoring wells in small-scale watershed. During the summer and winter season, time series of temperature data at streambed and groundwater were monitored for six months. In the winter time, we measured the temperature gradient between stream water and streambed. The observed data showed three typical types of temperature characteristics. First, the temperature of streambed was lower than that of stream water; second, the temperature of streambed and stream water was similar; and the last, the temperature of streambed was higher than that of stream water. The interconnections between the stream and the streambed were not homogeneously distributed due to weakly developed sediments and heterogeneous bedrock exposed as bed of the stream. The temperature data may be used in formal solutions of the inverse problems to estimate groundwater flow and hydraulic conductivity.