DOI QR코드

DOI QR Code

Measurement of Streambed Hydraulic Conductivity in Stream Sections in the Anseongcheon Watershed, Korea

안성천 수계 국가하천구간 하상 수리전도도 측정 시험

  • Jeon, Seon-Keum (Geogreen21 company) ;
  • Lee, Il Hoon (Geogreen21 company) ;
  • Lee, Jeongwoo (Hydro Science and Engineering Research Institute, Korea Institute of Civil Engineering and Building Technology) ;
  • Chung, Il-Moon (Hydro Science and Engineering Research Institute, Korea Institute of Civil Engineering and Building Technology) ;
  • Hong, Sung Hun (Han River Flood Control Office)
  • 전선금 ((주)지오그린21) ;
  • 이일훈 ((주)지오그린21) ;
  • 이정우 (한국건설기술연구원 수자원.하천연구소) ;
  • 정일문 (한국건설기술연구원 수자원.하천연구소) ;
  • 홍성훈 (한강홍수통제소 수자원정보센터)
  • Received : 2017.10.11
  • Accepted : 2017.11.14
  • Published : 2017.12.30

Abstract

Field experiments were conducted to estimate streambed hydraulic conductivity at 15 sites in the Anseongcheon watershed, Korea. Seepage meters and piezometers were installed in the streambed at each site to measure the amount of stream water-groundwater exchange and the hydraulic gradient. The vertical hydraulic conductivity was then calculated using Darcy's formula. The measured stream water-groundwater exchange rates were $4.08{\times}10^{-6}$ to $1.49{\times}10^{-5}m/s$, and the vertical hydraulic gradients were 0.005 to 0.145. The data suggest the streambed hydraulic conductivity to be $7.80{\times}10^{-5}$ to $1.58{\times}10^{-3}m/s$. The results show significant differences in connectivity between stream and aquifer. Quantification of the hydraulic interconnection between stream and aquifer, and evaluation of the effects of groundwater development and utilization on the streamflow require hydrogeological investigations of the connection between stream and aquifer, including the hydraulic conductivity of the streambed. Various field testing and analysis methods for hydrogeological assessment also require further improvement.

안성천 수계 하류부 국가하천구간내 15개 지점에 대해 하상퇴적층의 수리전도도 측정 시험을 수행하였다. 각 지점별로 하상퇴적층에 시피지미터와 피조미터를 설치하여 하천수-지하수 상호교환량과 수리경사를 측정하고 이를 Darcy 공식에 대입하여 연직방향 수리전도도를 산정하였다. 하천수-지하수 교환량은 $4.08{\times}10^{-6}{\sim}1.49{\times}10^{-5}m/s$, 연직방향 수리경사는 0.005에서 0.145로 측정되었고, 하상수리전도도는 $7.80{\times}10^{-5}{\sim}1.58{\times}10^{-3}m/s$로 산정되어 하천구간별, 지점별로 하천과 대수층간에 연결성의 큰 차이를 나타내었다. 하천과 대수층간의 수리적 상호연결성을 정량적으로 파악하고 지하수개발 이용이 하천수량에 미치는 영향을 평가하기 위해서는 하상퇴적층 수리전도도와 같이 하천과 대수층간 연결부의 수리지질학적 조사가 필요하며, 현장시험 및 분석 방법에 대한 기술적 향상이 이뤄져야 할 것이다.

Keywords

References

  1. Chen, X. H., 2000. Measurement of streambed hydraulic conductivity and its anisotropy, Environmental Geology, 39, 1317-1324. https://doi.org/10.1007/s002540000172
  2. Duwelius, R. F., 1996, Hydraulic conductivity of the streambed, east branch Grand Calumet River, Northern Lake County, Indiana, US Geological Survey Water-Resources Investigations Report 96-4218.
  3. Fox, G. A., 2007, Estimating streambed conductivity: guidelines for stream-aquifer analysis tests, Transactions of the ASABE, 50(1), 107-113. https://doi.org/10.13031/2013.22416
  4. Hunt, B., Weir, J., and Clausen, B. 2001, A stream depletion field experiment, Ground Water, 39(2), 283-289. https://doi.org/10.1111/j.1745-6584.2001.tb02310.x
  5. Kelly, S. E. and Murdoch, L. C., 2003, Measuring the hydraulic conductivity of shallow submerged sediments, Ground Water, 41(4), 431-439. https://doi.org/10.1111/j.1745-6584.2003.tb02377.x
  6. Kim, G. B., 2010, Application of analytical solution for stream depletion due to groundwater pumping in Gapcheon watershed, South Korea, Hydrological Processes, 24, 3535-3546. https://doi.org/10.1002/hyp.7777
  7. Kim, H., Lee, J. Y., and Lee, K. K., 2013, Spatial and temporal variations of groundwater-stream water interaction in an agricultural area, Case study: Haean Basin, Korea, Research Journal of Earth and Planetary Sciences, 3(1), 1-12.
  8. Kim, K. Y., Chon, C. M., Kim, T., Oh, J. H., Jeoung, J. H., and Park, S. K., 2006, Use of a temperature as a tracer to study stream-groundwater exchange in the hyporheic zone, Econ. Environ. Geol., Vol. 39(5), 525-535.
  9. Kim, N. W., Lee, J., Chung, I. M., and Kim, C. H., 2012, Change of groundwater-streamflow interaction according to groundwater abstraction in a green house land, Journal of Korea Water Resources Association, 45(10), 1051-1067. https://doi.org/10.3741/JKWRA.2012.45.10.1051
  10. Landon, M. K., Rus, D. L., and Harvey, F. E., 2001, Comparison of instream methods for measuring hydraulic conductivity in sandy streambeds, Ground Water, 39, 870-885. https://doi.org/10.1111/j.1745-6584.2001.tb02475.x
  11. Lee, D. R. and Cherry, J. A., 1978, A field exercise on groundwater flow using seepage meters and mini-piezometers, J. Geol. Edu., 27, 6-10.
  12. Lee, J., Chun, S. G., Yi, M. J., Kim, N. W., Chung, I. M., and Lee, M. H., 2015, Measurements of streambed hydraulic conductivity using drive-point piezometers and seepage meters in the upper reaches of Anseong stream, The Journal of Engineering Geology, 25(3), 1-8. https://doi.org/10.9720/kseg.2015.1.1
  13. Ministry of Land, Transport and Maritime Affairs, Han River Flood Control Office (HRFCO), 2011. Assessment of streamflow depletion according to groundwater withdrawals near stream.
  14. Rus, D. L., McGuire, V. L., Zurbuchen, B. R., and Zlotnik, V. A., 2001, Vertical profiles of streambed hydraulic conductivity determined using slug tests in central and western Nebraska, US Geological Survey Water-Resources Investigation Report 01-4212.
  15. Springer, A. E., Petroutson, W. D., and Semmens, B. A., 1999, Spatial and temporal variability of hydraulic conductivity in active reattachment bars of the Colorado River, Grand Canyon, Ground Water, 37(3), 338-344. https://doi.org/10.1111/j.1745-6584.1999.tb01109.x
  16. Vukovic, M. and Soro, A., 1992, Determination of hydraulic conductivity of porous media from grain-size composition, Littleton, Colo., Water Resources Publications.
  17. Woessner, W. W. and Sullivan, K. E., 1984, Results of seepage meter and mini-piezometer study, Lake Mead, Nevada, Ground Water, 22(5), 561-568. https://doi.org/10.1111/j.1745-6584.1984.tb01425.x