• Title/Summary/Keyword: stream region

Search Result 525, Processing Time 0.028 seconds

A Study on the Selection of New Town Area Using GIS -in Mongolia - (GIS를 이용한 신도시개발 가능지역 선정 연구 -몽골지역을 대상으로-)

  • Choi, Byoung-Gil;Na, Young-Woo
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.28 no.2
    • /
    • pp.273-280
    • /
    • 2010
  • This study aims to research into a plan for the spatial design on the major facilities in new-town region in Mongolia by using the spatial analytical technique in GIS. In case of Mongolian region, the demand for new-town development is rapidly increasing around Ulaanbaatar, where is the capital. On the other hand, the adequately relevant ground or the spatial-design technique is failing to be applied. This study extracted the region available for developing new down by using spatial analytical technique in GIS, and researched into the spatial-design plan for housing complex, filtration plant, sewage disposal plant, power plant, general park, crematory. The housing complex in the targeted region could be known to be adequate to be positioned around watercourse and road. It could be known to be adequate for filtration plant, which is the source of drinking water, to be located in the upper-stream region of a river, which is secured good quality of water, and for sewage disposal plant to be located in the lower-stream region available for minimizing occurrence of contamination. It is judged to be required for a proposed site of power plant to be located in the upper-stream region, for the park unit, which is space of the living culture, to be repaired and expanded the existing facilities, and for traffic network to be expanded through predicting demand along with new-town development. It is judged to be probably needed to be reflected even the flexible aspect for changing design through surveying the feasibility and economic efficiency on the future spatial design.

Vegetation Sectional View and Flora in the Sinpyeong Stream (Imsil), Churyeong Stream (Jeongeup) (신평천(임실), 추령천(정읍) 일대의 식물상 및 식생 단면도)

  • Oh, Hyun-Kyung;Beon, Mu-Sup
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.14 no.2
    • /
    • pp.59-81
    • /
    • 2011
  • The flora of the Sinpyeong and Churyeong stream were listed 324 taxa; 87 families, 227 genera, 289 species, 1 subspecies, 31 varieties and 3 forms. The Sinpyeong stream were 249 taxa and Churyeong stream were 221 taxa. Based on the rare plants (IUCN) by the Korea Forest Service and Korea National Arboretum were recorded; Penthorum chinense (Crassulaceae), etc. and endemic plants, 6 taxa; Weigela subsessilis (Caprifoliaceae), Lycoris flavescens (Amarylidaceae), etc. Based on the specific plants by floral region were total 12 taxa (3.7% of all 324 taxa of flora); Monochoria korsakowi (Pontederiaceae), etc. in class III. 10 taxa (Salix glandulosa (Salicaceae), Ulmus parvifolia (Ulmaceae), Impatiens noli-tangere (Balsaminaceae), Grewia biloba var. parviflora (Tiliaceae), Nymphoides peltata (Gentianaceae), Actinostemma lobatum (Cucurbitaceae), Cirsium pendulum (Compositae), Microstegium japonicum (Gramineae), etc.) in class I. Based on the naturalized plants, 51 taxa and ecosystem disturbing wild plants, 6 taxa (Rumex acetosella, Sicyos angulatus, Aster pilosus, Ambrosia artemisiaefolia, Hypochaeris radicata, Paspalum distichum var. distichum) and naturalization rate was 15.7% of all 324 taxa of flora, urbanization index was 18.8% of all 271 taxa of naturalized plants. Based on the hydrophytes, 23 taxa and emergent hydrophytes were 17 taxa, floating-leaved hydrophytes were 3 taxa, submergent hydrophytes were 2 taxa, free-floating hydrophytes was Spirodela polyrhiza.

Analysis of the Characteristics of Thermal Environment Change Due to Urban Stream Restoration (도심 하천 복원에 따른 주변지역 열환경 변화 특성 분석)

  • Do, Woo-Gon;Jung, Woo-Sik
    • Journal of Environmental Science International
    • /
    • v.28 no.2
    • /
    • pp.235-248
    • /
    • 2019
  • The purpose of this study is to quantitatively analyze the effects of a restoration project on the decrease in the temperature in the surrounding areas. The thermal environment characteristics of the investigation area were analyzed using the meteorological data from the Busanjin Automatic Weather System which is closest to the target area. The terrain data of the modeling domain was constructed using a digital map and the urban spatial information data, and the numerical simulation of the meteorological changes before and after the restoration of the stream was performed using the Envi-met model. The average temperature of the target area in 2016 was $15.2^{\circ}C$ and was higher than that of the suburbs. The monthly mean temperature difference was the highest at $1.1^{\circ}C$ in November and the lowest in June, indicating that the temperatures in the urban areas were high in spring and winter. From the Envi-met modeling results, reductions in temperature due to stream restoration were up to $1.7^{\circ}C$ in winter, and decreased to $3.5^{\circ}C$ in summer. The effect of temperature reduction was seen in the entire region where streams are being restored.

Diversity of freshwater red algae at Khao Luang National Park, southern Thailand

  • Chankaew, W.;Sakset, A.;Chankaew, S.;Ganesan, E.K.;Necchi, Orlando Jr.;West, John A.
    • ALGAE
    • /
    • v.34 no.1
    • /
    • pp.23-33
    • /
    • 2019
  • Freshwater red algal diversity and the relationship with water conditions in 22 stream segments in the area around Khao Luang National Park, Nakhon Si Thammarat province, southern Thailand, were studied during a period of twelve months (May 2014 to April 2015). Sixteen species of freshwater red algae, belonging to eight genera (Audouinella, Balliopsis, Batrachospermum, Caloglossa, Compsopogon, Kumanoa, Sirodotia, and Thorea) were identified, which were all reported earlier for the country. Thorea clavata (Thoreaceae) was the most common species occurring in eight stream segments. Caloglossa beccarii sensu lato (Delesseriaceae) and Sirodotia huillensis Skuja (Batrachospermaceae) had the highest percent cover with up to 40% and 20% per stream segment, respectively. The water quality showed most sites to be unpolluted or ultra-oligotrophic to oligotrophic. Canonical Correspondence Analysis revealed some trends in occurrence of individual species with stream environmental variables: Batrachospermum sp.with strong current velocity; Kumanoa hirosei with high turbidity, total dissolved solid and alkalinity; Caloglossa beccarii with high conductivity; Kumanoa tabagatenensis with high ammonia-nitrogen and Thorea siamensis with high calcium and magnesium. In view of the scarce studies on the stream ecology of freshwater red algae in Philippines and neighbouring countries, it is expected that the data presented here would be helpful in more critical further studies in south-east Asia in general.

A Study on the Near Wake of a Square Cylinder Using Particle Image Velocimetry ( I )- Mean Flow Field - (PIV기법을 이용한 정사각 실린더의 근접후류에 관한 연구 (I) - 평균유동장 -)

  • Lee, Man-Bok;Kim, Gyeong-Cheon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.10
    • /
    • pp.1408-1416
    • /
    • 2001
  • Mean flow fields in the near wake of a square cylinder have been studied experimentally using a Particle Image Velocimetry (PIV). Ensemble-averaged velocity fields are successfully measured fur the square cylinder wake including the reverse flow region which arises many difficulties in accurate measurement by using conventional techniques, Experiments are performed at two free stream velocities of U$\_$$\infty$/ = 1.27m/s and 3.03m/s. The corresponding Reynolds numbers based on the free-stream velocity and cylinder diameter are 1600 and 3900, respectively. The intensity of free-stream turbulence is less than 1%, the blockage ratio (D/H) is 6.6% and the aspect ratio (W/D) is 40. The effect of Reynolds number on the near wake of a square cylinder has been investigated by the global mean velocity and instantaneous velocity fields. The most striking feature is that the length of the recirculating region increases with increasing Reynolds number, which turns out totally reverse trend compared with those observed in the circular cylinder wake at the same range of Reynolds number. Fer the case of higher Reynolds number, the mean velocity data agree well with those of relevant existing data obtained at much higher Reynolds numbers, which reflects the general aspect of sharp-edged bluff body wake.

Effects of Combustor-Level High Inlet Turbulence on the Endwall Flow and Heat/Mass Transfer of a High-Turning Turbine Rotor Cascade

  • Lee, Sang-Woo;Jun, Sang-Bae;Park, Byung-Kyu;Lee, Joon-Sik
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.8
    • /
    • pp.1435-1450
    • /
    • 2004
  • Experimental data are presented which describe the effects of a combustor-level high free-stream turbulence on the near-wall flow structure and heat/mass transfer on the endwall of a linear high-turning turbine rotor cascade. The end wall flow structure is visualized by employing the partial- and total-coverage oil-film technique, and heat/mass transfer rate is measured by the naphthalene sublimation method. A turbulence generator is designed to provide a highly-turbulent flow which has free-stream turbulence intensity and integral length scale of 14.7% and 80mm, respectively, at the cascade entrance. The surface flow visualizations show that the high free-stream turbulence has little effect on the attachment line, but alters the separation line noticeably. Under high free-stream turbulence, the incoming near-wall flow upstream of the adjacent separation lines collides more obliquely with the suction surface. A weaker lift-up force arising from this more oblique collision results in the narrower suction-side corner vortex area in the high turbulence case. The high free-stream turbulence enhances the heat/mass transfer in the central area of the turbine passage, but only a slight augmentation is found in the end wall regions adjacent to the leading and trailing edges. Therefore, the high free-stream turbulence makes the end wall heat load more uniform. It is also observed that the heat/mass transfers along the locus of the pressure-side leg of the leading-edge horseshoe vortex and along the suction-side corner are influenced most strongly by the high free-stream turbulence. In this study, the end wall surface is classified into seven different regions based on the local heat/mass transfer distribution, and the effects of the high free-stream turbulence on the local heat/mass transfer in each region are discussed in detail.

Eco-Hydrologic Assessment of Maintenance Water Supply on Oncheon Stream (온천천 유지용수 공급에 따른 생태수문환경 변화분석)

  • Jang, Ju-Hyoung;Kim, Sang-Dan;Sung, Ki-June;Shin, Hyun-Suk
    • Journal of Environmental Science International
    • /
    • v.16 no.8
    • /
    • pp.973-983
    • /
    • 2007
  • The eco-hydrologic effects of maintenance water supply on Oncheon stream are studied using hydrologic, hydraulic and ecologic models. SWMM (Storm Water Management Model) is used for long-term simulation of runoff quantity and water quality from Oncheon stream watershed. Using the output hydrologic variables from SWMM, HEC-RAS (River Analysis System) is then used to simulate the hydraulics of water flow through Oncheon stream channels. Such hydrologic, hydraulic and water quality output variables from SWMM and HEC-RAS are served as input data to execute PHABSIM (Physical Habitat Simulation) for the purpose of predicting the micro-habitat conditions in rivers as a function of stream flow and the relative suitability of those conditions to aquatic life. It is observed from the PHABSIM results that the weighted usable area for target fishes has the maximum value at $2m^3/s$ of instream flow. However, mid and down stream areas that have concrete river bed and covered region are unsuitable for fish habitat regardless of instream flow increment. The simulation results indicate that the simple maintenance water supply is limited in its effect to improve the ecological environment in Oncheon stream. Therefore, it is imperative to improve water quality and to recover habitat conditions simultaneously.

Analysis of the characteristics of damaging factors in curved channel - Focus on the Namdae stream in GangNeung City - (하천만곡부의 피해인자 특성 조사 분석 - 강릉시 남대천을 중심으로 -)

  • Shim, Kee-Oh;Lee, Joon-Ho;Huh, Kyung-Han;Kim, Jin-Young
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.4 no.4 s.15
    • /
    • pp.13-19
    • /
    • 2004
  • The tremendous flood damage caused by Typhoon Rusa(2002) was occurred at GangNeung City in GangWon Province. Almost of the city region was inundated and most of the stream channel facilities were damaged by flash flood with heavy rainfalls. We have investigated seriously damaged parts of stream bank and tried to analyze the causes of damages focused on flow characteristics in curved channel. We analyzed the damage aspects of curved channel by examining geomorphological survey and hydrographical characteristics. Strong correlation was shown according to the regression analysis between length of stream and meander wave length, and meander belt and length of stream. Furthermore, enveloped curve was presented between bottom slope of channel and meander belt, and meander ratio and channel width. As a result, special consideration about stream flow characteristics are needed for engineers who design stream banks and channels.

Prediction and Verification of Distribution Potential of the Debris Landforms in the Southwest Region of the Korean Peninsula (한반도 서남부 암설사면지형의 분포가능성 예측 및 검증)

  • Lee, Seong-Ho;Jang, Dong-Ho
    • Journal of The Geomorphological Association of Korea
    • /
    • v.27 no.2
    • /
    • pp.1-17
    • /
    • 2020
  • This study evaluated a debris landform distribution potential area map in the southwest region of the Korean peninsula. A GIS spatial integration technique and logistic regression method were used to produce a distribution potential area map. Seven topographic and environmental factors were considered for analysis and 28 different data set were combined and used to get most effective results. Moreover, in an accuracy assessment, the extracted results of the Distribution Potential area were evaluated by conducting a cross-validation module. Block stream showed the highest accuracy in the combination No. 6, and that DEM (digital elevation model) and TWI (topographic wetness index) have relatively high influences on the production of the Block stream Distribution Potential area map. Talus showed the highest accuracy in the combination No. 13. We also found that slope, TWI and geology have relatively high influences on the production of the Talus Distribution Potential area map. In addition, fieldwork confirmed the accuracy of the input data that were used in this study, and the slope and geology were also similar. It was also determined that these input data were relatively accurate. In the case of angularity, the block stream was composed of sub-rounded and sub-angular systems and Talus showed differences according to the terrain formation. Although the results of the rebound strain measurement using a Schmidt's hammer did not shown any difference in topographic conditions, it is determined that the rebound strain results reflected the underlying geological setting.

Identification of vulnerable region susceptible to soil losses by using the relationship between local slope and drainage area in Choyang creek basin, Yanbian China (중국 연변 조양하 유역의 국부경사와 배수면적의 관계를 이용한 토사유실 우심지역 추출)

  • Kim, Joo-Cheol;Cui, Feng Xue;Jung, Kwan Sue
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.3
    • /
    • pp.235-246
    • /
    • 2018
  • The main purpose of this study is to suggest a methodology for identifying vulnerable region in Choyang creek basin susceptible to soil losses based on runoff aggregation structure and energy expenditure pattern of natural river basin within the framework of power law distribution. To this end geomorphologic factors of every point in the basin of interest are extracted by using GIS, which define tractive force and stream power as well as drainage area, and then their complementary cumulative distributions are graphically analyzed through fitting them to power law distribution to identify the sensitive points within the basin susceptible to soil losses with respect to scaling regimes of tractive force and stream power. It is observed that the range of vulnerable region by scaling regime of tractive force is much narrower than by scaling regime of stream power. This result seems to be due to the tractive force is a kind of scale dependent factor which does not follow power law distribution and does not adequately reflect energy expenditure pattern of river basins. Therefore, stream power is preferred to be a more reasonable factor for the evaluation of soil losses. The methodology proposed in this study can be validated by visualizing the path of soil losses, which is generated from hill-slope process characterized by local slope, to the valley through fluvial process characterized by drainage area as well as local slope.