• 제목/요약/키워드: stratification

검색결과 1,247건 처리시간 0.026초

용담호 수온성층해석을 위한 유입수온 회귀분석 모형 개발 (Development of the Inflow Temperature Regression Model for the Thermal Stratification Analysis in Yongdam Reservoir)

  • 안기홍;김선주;서동일
    • 환경영향평가
    • /
    • 제20권4호
    • /
    • pp.435-442
    • /
    • 2011
  • In this study, a regression model was developed for prediction of inflow temperature to support an effective thermal stratification simulation of Yongdam Reservoir, using the relationship between gaged inflow temperature and air temperature. The effect of reproductability for thermal stratification was evaluated using EFDC model by gaged vertical profile data of water temperature(from June to December in 2005) and ex-developed regression models. Therefore, in the development process, the coefficient of correlation and determination are 0.96 and 0.922, respectively. Moreover, the developed model showed good performance in reproducing the reservoir thermal stratification. Results of this research can be a role to provide a base for building of prediction model for water quality management in near future.

온수 추출과정 동안 축열조 내의 열성층 특성 및 온수 이용률에 관한 연구 (A Study on Thermal Stratification Characteristics and Useful Rate of Hot Water in Thermal Storage Tank during Hot Water Extraction Process)

  • 장영근;박정원
    • 설비공학논문집
    • /
    • 제14권6호
    • /
    • pp.503-511
    • /
    • 2002
  • Heat flow characteristics during hot water extraction process was studied experimentally. Data were taken at various outlet port type for the fixed inlet port type, inlet-outlet temperature differences and mass flow rates. In this study, the temperature distribution in a storage tank and an outlet temperature were measured to predict a degree of stratification in the storage tank, and a useful rate of hot water was analysed with respect to the variables dominating a extraction process. Experimental results show that the degree of stratification and useful rate of hot water are all high in a low flow rate in case of using modified distributor I (MDI) as the outlet port type.

Numerical Analysis of Evolution of Thermal Stratification in a Curved Piping System

  • Park, Seok-Ki;Nam, Ho-Yun;Jo, Jong-Chull
    • Nuclear Engineering and Technology
    • /
    • 제32권2호
    • /
    • pp.169-179
    • /
    • 2000
  • A detailed numerical analysis of the evolution of thermal stratification in a curved piping system in a nuclear power plant is performed. A finite volume based thermal-hydraulic computer code has been developed employing a body-fitted, non-orthogonal curvilinear coordinate for this purpose. The cell-centered, non-staggered grid arrangement is adopted and the resulting checkerboard pressure oscillation is prevented by the application of momentum interpolation method. The SIMPLE algorithm is employed for the pressure and velocity coupling, and the convection terms are approximated by a higher-order bounded scheme. The thermal-hydraulic computer code developed in the present study has been applied to the analysis of thermal stratification in a curved duct and some of the predicted results are compared with the available experimental data. It is shown that the predicted results agree fairly well with the experimental measurements and the transient formation of thermal stratification in a curved duct is also well predicted.

  • PDF

가압식 바닥급기 시스템의 여름철 성층화 경향에 관한 실험적 연구 (An Experimental Study on Thermal Stratification of Pressurized Plenum Underfloor Air Distribution System during Cooling)

  • 김동희;유기형;조동우;서정석;한성필
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2007년도 동계학술발표대회 논문집
    • /
    • pp.340-345
    • /
    • 2007
  • The underfloor air distribution system has been attracting to architects and building owners as one of valuable system for the renovated and newly office building. In this paper, we discussed the thermal stratification profile of pressurized plenum underfloor air distribution(UFAD) according to indoor setting temperature, diffuser number, diffuser type. For this, the space of office building(H corp.) is selected for measuring the air volume of underfloor diffuser and vertical temperature profile. As a result, the thermal stratification profile is influenced by the number and type of the underfloor diffuser and thermal storage character of the underfloor. Whereas indoor setting temperature have a lower significant impact on thermal stratification.

  • PDF

SURGE LINE STRESS DUE TO THERMAL STRATIFICATION

  • Jhung, Myung-Jo;Choi, Young-Hwan
    • Nuclear Engineering and Technology
    • /
    • 제40권3호
    • /
    • pp.239-250
    • /
    • 2008
  • If there is a water flow with a range of temperature inside a pipe, the wanner water tends to float on top of the cooler water because it is lighter, resulting in the upper portion of the pipe being hotter than the lower portion. Under these conditions, such thermal stratification can play an important role in the aging of nuclear power plant piping because of the stress caused by the temperature difference and the cyclic temperature changes. This stress can limit the lifetime of the piping, even leading to penetrating cracks. Investigated in this study is the effect of thermal stratification on the structural integrity of the pressurizer surge line, which is reported to be one of the pipes most severely affected. Finite element models of the surge line are developed using several element types available in a general purpose structural analysis program and stress analyses are performed to determine the response characteristics for the various types of top-to-bottom temperature differentials due to thermal stratification. Fatigue analyses are also performed and an allowable environmental correction factor is suggested.

분기배관에서의 열성층 현상 완화방안에 관한 연구 (A Study on the Mitigation Schemes of Thermal Stratification Phenomenon in a Branch Piping)

  • 박만흥;김광추;이승철
    • 설비공학논문집
    • /
    • 제18권7호
    • /
    • pp.603-611
    • /
    • 2006
  • A variety of schemes were sought for a mitigation of thermal stratification phenomenon in the branch piping of domestic nuclear power plant. Several mechanisms of thermal stratification occurrence were introduced in this paper. A number of factors were selected to find out the schemes for thermal stratification mitigation and the computational analysis were performed. The length of vertical branch piping, the diameter, the radius of curvature of the elbow, the direction of connection between main piping and branch piping, the slope of branch piping, the leakage flow rate, the installation of additional valve, the change of the 1st valve position and another branch piping connected with branch piping were mentioned as factors in this paper.

원자로 비상 냉각재 누설에 의한 열성층의 비정상 특성에 관한 연구 (Study of Thermal Stratification into Leaking Flow in the Nuclear Power Plant, Emergency Core Coolant System)

  • 한성민;최영돈;박민수
    • 설비공학논문집
    • /
    • 제18권3호
    • /
    • pp.202-210
    • /
    • 2006
  • In the nuclear power plant, emergency core coolant system (ECCS) is furnished at reactor coolant system (RCS) in order to cool down high temperature water in case of emergency. However, in this coolant system, thermal stratification phenomenon can be occurred due to coolant leaking in the check valve. The thermal stratification produces excessive thormal stresses at the pipe wall so as to yield thermal fatigue crack (TFC) accident. In the present study, when the turbulence penetration occurs in the branch pipe, the maximum temperature differences of fluid at the pipe cross-sections of the T-branch with thermal stratification are examine.

가압기 밀림관 수평배관 외부 가열에 의한 열성층 유동 완화 수치해석 (Numerical analysis for mitigating thermal stratification flow of pressurizer surge horizontal pipe by outside heating)

  • 정일석;김유
    • 대한기계학회논문집B
    • /
    • 제21권5호
    • /
    • pp.670-678
    • /
    • 1997
  • A method to mitigate the thermal stratification phenomenon of pressurizer surge line is proposed by heating bottom outside of horizontal pipe. Unsteady two dimensional model has been used to numerically investigate an effect of heating the bottom of pipe. The dimensionless governing equations are solved by using the control volume formulation and SIMPLE algorithm. Temperature and streamline profiles of fluids and pipe walls with time are compared with the previous study result. The numerical result of this study shows that the outside heating can relaxate the thermal stratification flow of the pressurizer surge line. Maximum dimensionless temperature difference between hot and cold sections of the pipe inner wall which causes thermal stratification was reduced from 0.514 to 0.424 at dimensionless time 1, 632 and 1, 500 respectively.

측면가열 자연대류 밀폐공간에서 고체 삽입물이 열성층화에 미치는 영향 (Effect of a Solid Insert on Thermal Stratification in a Side-Heated Natural Convection Enclosure)

  • 김수현
    • 설비공학논문집
    • /
    • 제16권3호
    • /
    • pp.211-217
    • /
    • 2004
  • Effect of a solid insert on thermal stratification in the natural convection enclosure is numerically investigated. The enclosure consists of two differently heated vertical walls and two adiabatic horizontal walls. A solid insert is located in the middle of the enclosure. The non-dimensional governing equations are solved by using the SIMPLER algorithm. The computations are carried out with the variations of thermal conductivity, width and height of the solid insert. The Prandtl number of the fluid in an enclosure is fixed at Pr=0.71, Two cases of Rayleigh number are considered in the present study, i.e., Ra:10$^3$ and 10$^{6}$ . The thermal stratification attenuates as thermal conductivity, width, and height of the solid insert are increased. As the thermal conductivity ratio of a solid insert to fluid increases beyond (equation omitted)10$^3$, the thermal stratification ratio shows an asymptotic value.

농도성충화가 DME HCCI 엔진의 운전 영역 확장에 미치는 영향에 관한 수치해석 연구 (Effect of the Fuel Stratification on the Operating Range for a DME HCCI Engine based on Numerical Analysis)

  • 권오석;정동원;백영순;임옥택
    • 한국수소및신에너지학회논문집
    • /
    • 제20권3호
    • /
    • pp.256-263
    • /
    • 2009
  • The operating range of HCCI engine is narrow due to excessive rate of pressure rise on high load. The fuel stratification is proposed to solve the problem. The purpose of this study is to gain a better understanding of the effects of fuel stratification on reducing the pressure-rise rate at high load in HCCI combustion and to investigate that the operating range is expanded for fuel stratification in the preceding condition of initial temperature and equivalence ratios. The engine is fueled with Di-Methyl Ether (DME) which has unique 2-stage heat release. The computations were conducted using SENKIN application of the CHEMKINll kinetics rate code. Calculation result shows that proper fuel stratification prolongs combustion duration and reduce pressure rise rate.