• Title/Summary/Keyword: strata and rocks

Search Result 69, Processing Time 0.025 seconds

Late Quaternary Sequence Stratigraphy in Kyeonggi Bay, Mid-eastern Yellow Sea (황해 중동부 경기만의 후기 제4기 순차층서 연구)

  • Kwon, Yi-Kyun
    • Journal of the Korean earth science society
    • /
    • v.33 no.3
    • /
    • pp.242-258
    • /
    • 2012
  • The Yellow Sea has sensitively responded to high-amplitude sea-level fluctuations during the late Quaternary. The repeated inundation and exposure have produced distinct transgression-regression successions with extensive exposure surfaces in Kyeonggi Bay. The late Quaternary strata consist of four seismic stratigraphic units, considered as depositional sequences (DS-1, DS-2, DS-3, and DS-4). DS-1 was interpreted as ridge-forming sediments of tidal-flat and estuarine channel-fill facies, formed during the Holocene highstand. DS-2 consists of shallow-marine facies in offshore area, which was formed during the regression of Marine Isotope Stage (MIS)-3 period. DS-3 comprises the lower transgressive facies and the upper highstand tidal-flat facies in proximal ridges and forced regression facies in distal ridges and offshore area. The lowermost DS-4 rests on acoustic basement rocks, considered as the shallow-marine and shelf deposits formed before the MIS-6 lowstand. This study suggests six depositional stages. During the first stage-A, MIS-6 lowstand, the Yellow Sea shelf was subaerially exposed with intensive fluvial incision and weathering. The subsequent rapid and high amplitude rise of sea level in stage-B until the MIS-5e highstand produced transgressive deposits in the lowermost part of the MIS-5 sequence, and the successive regression during the MIS-5d to -5a and the MIS-4 lowstand formed the upperpart of the MIS-5 sequence in stage-C. During the stage-D, from the MIS-4 lowstand to MIS-3c highstand period, the transgressive MIS-3 sequence formed in a subtidal environment characterized by repetitive fluvial incision and channel-fill deposition in exposed area. The subsequent sea-level fall culminating the last glacial maximum (Stage-E) made shallow-marine regressive deposits of MIS-3 sequence in offshore distal area, whereas it formed fluvial channel-fills and floodplain deposits in the proximal area. After the last glacial maximum, the overall Yellow Sea shelf was inundated by the Holocene transgression and highstand (Stage-F), forming the Holocene transgressive shelf sands and tidal ridges.

Levels and Patterns of Main Terms' Interrelationships in Student Teachers' Notable Questions about the Contents of the Elementary Science Textbooks (초등 과학교과서 내용에 대한 예비교사들의 주요 질문에 나타나는 용어의 상호 관련성 수준과 유형)

  • Lee, Myeong-Je
    • Journal of the Korean earth science society
    • /
    • v.27 no.1
    • /
    • pp.20-31
    • /
    • 2006
  • This study analysed student teachers' notable questions about the earth science contents in the elementary science textbooks. The contents of notable questions were defined as ‘notable question contents 1' and 'notable question contents 2'. Both the question contorts are contents about which the number of questions is above three times and from two times to three times as much as the mean number of questions per page of each unit respectively. The results are as follows. First, question contents 1 are found as 'clouds observation', 'geological strata formation' and so on. Question contents 2, 'rainfall measurement', 'moon's movement during one night' and so on are found. Second, the number of interrelationships of main terms in questions increased in each question of question contents 1, but 4 term-patterns are found more in question contents 2 than question contents 1. Third, high interrelationship patterns of terms in question contents 1 are 'coal and petroleum-generation', 'metamorphosis-heat and pressure', 'metamorphosis-heat and pressure-metamorphic rocks', 'planet-sun-comet-revolution' and in question contents 2. 'constellation plate-use', 'dryness and wetness hygrometer-principle', 'seismograph-principle-earthquake', 'earth rotation axis-tilting-occurrence', 'dryness and wetness hygrometer-principle-humidity' and so on. The sources of questions analysed in this study are estimated as the content construction system of textbooks, or students' general questions about the earth science contents. If this is the former, the problems in texts and illustrations in textbooks should be articulated and resolved. And if the latter, the elementary science curriculum has to be reconsidered in view of scientific literacy in earth science.

Neaushore sedimentary environments of the Sinyangri Fornation in Cheju Island, Korea (제주도 신양리층의 연안퇴적환경)

  • 한상준;윤호일
    • 한국해양학회지
    • /
    • v.22 no.1
    • /
    • pp.1-8
    • /
    • 1987
  • The Sinyangri Formation crops out in the vicinity of the Seongsan Peninsula, Cheju Island. Based on sedimentary structures, texture and composition, the lithologic sequence has been classified, in ascending stratigraphic order, into three lithofacies: parallel laminated sandstone facies (Facies I): conglomerate facies(Facies Il); and cross stratified sandstone facies (F acies Ill). Wedge-to-parallel, seaward-inclined in low angle less than 10$^{\circ}$lamina -sets with alternations of coarseand fine-grained sediments in the Facies I are the characteristic sedimentary structures in the foreshore depositional environment. Grains of this faciesare well sorted with good roundness compared with the other two facies, partly showing inverse graded bedding. Facies II,largely composed of claset-supported,very poorly-sorted conglomerates,does not pinch out but occurs continuously along the Sinyangri beach.Interstitial spaces between the clasts are mostly infilled with volcanic-ash and small amounts of well-rounded shell fragments.Maximum bed thickness as well as the size of imbedded basaltic clasts decreases to the south(toward Sinyangri). Large clasts with parallel lamination originated from the underlying Facies i,are generally elongated parallel to the bedding plane and display no systematic horizontal variations in size indicative of in-situ clasts.In view of the facts above it seems that large gravels from the basaltic rocks are transgressive lag conglomerates which are partly affected by the combination of longshore currents and propagating wave.Local occurrence of cross-strata dipping toward the south in the upper part of Facies IIreinforces the evidence of the action of longshore currents. Facies IIIis characterized by bidirectional trough cross-starifiction and wave ripples associated with the upper shoreface(surfzone) environments.In summary,the Sinyangri Formation represents the depositional environments of foreshore to upper shoreface truncated by disconformity between Facies Iand II.

  • PDF

Skarn Formation in Metamorphic Rocks of the Chungju Mine Area (충주광산 지역 계명산층의 텅스텐 스카른화작용)

  • Kim, Gun-Soo;Park, Maeng-Eon
    • Economic and Environmental Geology
    • /
    • v.28 no.3
    • /
    • pp.185-197
    • /
    • 1995
  • Tungsten skarns in the Chungju mine which consists mainly of strata-bound type iron ore deposits are found in the vicinity of the contact between the age-unknown Kyemeongsan Formation and granitic rock intrusions of Mesozoic age($134{\pm}2Ma$). Tungsten skarns were formed extensively from alumina and silica-rich schistose rocks by the introduction of calcium and iron from hydrothermal solution. The skarns comprise a metasomatic column and are subdivided into four facies; garnet facies, wollastonite facies, epidote facies and chlorite facies. The skarn process in time-evolutional trend can be divided broadly into the four facies in terms of the paragenetic sequence of calc-silicates and their chemical composition. Skarn and ore minerals were formed in the following sequence; (1) garnet facies, adjacent to biotite granite, containing mainly garnet(>Ad96) and magnetite, (2) wollastonite facies containing mainly wollastonite and garnet(Ad95~60), (3) epidote facies, containing mainly epidote(Ps35~31), quartz, andradite-grossular(Ad63~50), and scheelite, (4) chlorite facies, adjacent to and replacing schist, containing mainly chrolite, muscovite, quartz, calcite, epidote(Ps31~25), hematite and sulfides. The mineral assemblage and mineral compositions. suggest that the chemical potentials of Ca and Fe increased toward the granitic rock, and the component Al, Mg, K, and Si decreased from the host rock to granitic rock. The homogenization temperature and salinity of fluid inclusion in scheelite, quartz and epidote of epidote facies skarn is $300-400^{\circ}C$ and 3-8wt.% eqiv. NaCl, respectively. ${\delta}^{34}S$ values of pyrite and galena associated with chlorite facies skarn is $9.13{\sim}9.51%_{\circ}$ and $5.85{\sim}5.96%_{\circ}$, respectively. The temperature obtained from isotopic com· position of coexisting pyrite-galena is $283{\pm}20^{\circ}C$. Mineral assemblages and fluid inclusion data indicate that skarn formed at low $X_{CO_2}$, approximately 0.01. Temperature of the skarn mineralization are estimated to be in the range of $400^{\circ}C$ to $260^{\circ}C$ and pressure to be 0.5 kbar. The oxygen fugacity($fo_2$) of the skarn mineralization decreased with time. The early skarn facies would have formed at log $fo_2$ values of about -25 to -27, and late skarn facies would have formed at log $fo_2$ values of -28 to -30. The estimated physicochemical condition during skarn formation suggests that the principal causes of scheelite mineralization are reduction of the ore·forming fluid and a decrease in temperature.

  • PDF

Revised Fission-track Ages and Chronostratigraphies of the Miocene Basin-fill Volcanics and Basements, SE Korea (한국 동남부 마이오세 분지 화산암과 기반암의 피션트랙 연대 재검토와 연대층서 고찰)

  • Shin, Seong-Cheon
    • The Journal of the Petrological Society of Korea
    • /
    • v.22 no.2
    • /
    • pp.83-115
    • /
    • 2013
  • Erroneous fission-track (FT) ages caused by an inappropriate calibration in the initial stage of FT dating were redefined by re-experiments and zeta calibration using duplicate samples. Revised FT zircon ages newly define the formation ages of Yucheon Group rhyolitic-dacitic tuffs as Late Cretaceous to Early Paleocene ($78{\pm}4$ Ma to $65{\pm}2$ Ma) and Gokgangdong rhyolitic tuff as Early Eocene ($52.1{\pm}2.3$ Ma). In case of the Early Miocene volcanics, FT zircon ages from a dacitic tuff of the upper Hyodongri Volcanics ($21.6{\pm}1.4$ Ma) and a dacitic lava of the uppermost Beomgokri Volcanics ($21.3{\pm}2.0$ Ma) define chronostratigraphies of the upper Beomgokri Group, respectively in the southern Eoil Basin and in the Waeup Basin. A FT zircon age ($19.8{\pm}1.6$ Ma) from the Geumori dacitic tuff defines the time of later dacitic eruption in the Janggi Basin. Based on FT zircon ages for dacitic rocks and previous age data (mostly K-Ar whole-rock, partly Ar-Ar) for basaltic-andesitic rocks, reference ages are recommended as guides for stratigraphic correlations of the Miocene volcanics and basements in SE Korea. The times of accumulation of basin-fill sediments are also deduced from ages of related volcanics. Recommended reference ages are well matched to the whole stratigraphic sequences despite complicated basin structures and a relative short time-span. The Beomgokri Group evidently predates the Janggi Group in the Eoil-Waeup basins, while it is placed at an overlapped time-level along with the earlier Janggi Group in the Janggi Basin. Therefore, the two groups cannot be uniformly defined in a sequential order. The Janggi Group of the Janggi Basin can be evidently subdivided by ca. 20 Ma-basis into two parts, i.e., the earlier (23-20 Ma) andesitic-dacitic and later (20-18 Ma) basaltic strata.

On the penecontemporaneous deformation structures of the Sinri area at the mid western boundary of the Jinan Basin (진안분지 서변 중앙부 신리지역의 준퇴적동시성 변형구조)

  • Lee Young-Up
    • The Korean Journal of Petroleum Geology
    • /
    • v.6 no.1_2 s.7
    • /
    • pp.8-19
    • /
    • 1998
  • In the Sinri area located at the mid western boundary of the Jinan basin, the Manduksan Formation which mainly consists of coarse sandstone narrowly intercalated with shale and the alternation of sand and shale and the Dalgil Formation mainly of shale are distributed. It consists of four lithofacies, such as coarse sandstone, interbedded sandstone/shale, shale and volcanic rock lithofacies. All sediments are interpreted to be deposited by turbidity currents and free fallouts in a lacustrine basin. In these rocks many penecontemporaneous defomation structures are observed such as fold and thrust fault at large scale, and swelling, boudin structure, flame structure, load structure, ptygmatic fold and convolute bedding at small scale. All these structures are developed between upper and lower undisturbed sedimentary strata. Two large folds are similar folds, but lower one gradually developed into concentric shape. The swelling structures by convergence of the sediments are observed in the hinge area and the boudin structures are developed in the limb. The thrust faults including minor folds and sandstone lobes show duplex structure with asymmetric and kink fold on and below in front of the detached sandstone layer. Development of the swellings, boudins and lobes indicates the flexbility of the sediments during deformational episodes. The folds and thrust faults rarely contain fractures relative their scales and lithologies. This feature also indicates the retrievability of sediments during deformation. At the flanks of the thrust faults the normal faults are formed contemporaneously. The deformation structures at small scale such as flame structures, load structures, ptygmatic folds and convolute beddings are syndepositional and penecontemporaneous, which show the effects of tectonic movements. All these deformed sedimentary structures of the Sinri area suggest the continuing tectonic movements during and/or after deposition.

  • PDF

A Study of the Three-story Stone Pagodas in Hyeon-ri and Hwacheon-ri, Yeongyang - Focusing on Analysis of the Pagoda Reliefs - (영양 현리와 화천리 삼층석탑 연구 - 탑부조상(塔浮彫像)의 도상 분석을 중심으로 -)

  • Han, Jaewon
    • Korean Journal of Heritage: History & Science
    • /
    • v.53 no.4
    • /
    • pp.250-273
    • /
    • 2020
  • The three-story stone pagodas in Hyeon-ri and Hwacheon-ri,Yeongyang Gyeongsangbuk-do are stone pagodas that exhibit the typical style of Unified Silla. The two pagodas are believed to have been built in the mid- and late 9th centuries at the latest, considering the style of the three-story roof stone on top of the double-tier base. This is also confirmed by the reliefs carved at the base and the first-story of the pagoda. The Four Heavenly Kings and the Twelve Zodiacal Animal Deities were first combined in the late 8th century in the stone pagoda at the Wonwonsa Temple Site, and the Eight Classes of Divine Beings was also the most popular carved pagoda reliefs in the 9th century. However, the two Yeongyang stone pagodas are characterized by a combination of the Four Heavenly Kings (1st story), the Eight Classes (top base), and the Twelve Zodiacal Animals (lower base), and the stone used for the pagoda consists of sedimentary rocks of the sandstone family, which comprise most of the geological strata in the Yeongyang area, rather than ordinary granite. The new combinations of the three types of guardian deities and the Eight Classes changed from seated to standing poses is interpreted as an attempt to enhance the Buddhist faith and cultural status of the Yeongyang area, along with the fact that the stone pagoda was built using local natural materials. The Eight Classes of the Yeongyang stone pagoda does not follow the two types of arrangement of the pagodas with the Eight Classes, but some of the deities have been relocated to a new location. Composed of AsuraGandharva on the east side, Naga-Mahoraga on the south, Deva-Garuda on the west, and Kimnara-Yaksa on the north, this form can be classified as a unique 'third layout of the Eight Classes' in the Yeongyang area. Such changes in the shape and posture of the reliefs reflect a new perception of the pagodas. The reason why the Gandharva and Yaksa statues were carved on the east and north sides, respectively, was because they were deemed subordinate to the Four Heavenly Kings, and the fact that the Naga and the Mahoraga were carved on the south side was presumed to have influenced the geographical location of the two pagodas on the northern side of Banbyeoncheon Stream. The Hyeon-ri and Hwacheon-ri three-story stone pagodas inherited the tradition of typical Unified Silla-period pagodas, while also bearing their own new regional characteristics.

Formation and Evolution of the Miocene Ipcheon Subbasin in Yangbuk-myeon, Gyeongju, SE Korea (한반도 남동부 경주시 양북면 마이오세 입천소분지의 형성과 발달사)

  • Seong, Changhun;Cheon, Youngbeom;Son, Moon;Sohn, Young Kwan;Kim, Jin-Seop
    • The Journal of the Petrological Society of Korea
    • /
    • v.22 no.1
    • /
    • pp.19-34
    • /
    • 2013
  • The Ipcheon Subbasin is an isolated Miocene basin in SE Korea, which has the geometry of an asymmetric graben elongated in the NE-SW direction. It is in contact with basement rocks by faults and separated from adjacent Waup and Eoil basins by the basement. The strata of the basin fills have an overall homoclinal structure, dipping toward NW or WNW. The basin fills consist of Early Miocene sediments rich in dacitic volcanic and volcaniclastic deposits and Middle Miocene non-volcanic and nonmarine conglomerates intercalated with sand layers, which are distributed in the northeastern and southwestern parts of the basin, respectively. Kinematic analysis of syndepositional conjugate faults in the basin fills indicates WNW-ESE extension of the basin. These features are very similar to those of the adjacent Waup and Eoil basins, indicating that the basin extension was governed by the NE-trending northwestern border faults and that the basin experienced a propagating rifting from NE to SW. Basaltic materials, which occur abundantly in the Eoil Basin, are totally absent in the Ipcheon Subbasin. The observations of the dacitic tuff and tuffaceous mudstone in the subbasin, on slabs and under microscope, suggest that they have lithologies very similar to those of the Yondongri Tuff in the Waup Basin. The Middle Miocene non-volcanic sediments of the Waup and Eoil basins and the Ipcheon Subbasin are distributed consistently in the southwestern part of each basin. It is thus concluded that the extension of the Ipcheon Subbasin began at about 22 Ma together with the Waup Basin and was lulled during the main extension period of the Eoil Basin between 20-18 Ma. At about 17 Ma, the subbasin was re-extended due to the activation of the Yeonil Tectonic Line associated with the propagating rifting toward SW. This event is interpreted to have provided new sedimentation space for the Middle Miocene sediments in the southwestern parts of the Waup and Eoil basins and the Ipcheon Subbasin as well.

GENERAL STRATIGRAPHY OF KOREA (한반도층서개요(韓半島層序槪要))

  • Chang, Ki Hong
    • Economic and Environmental Geology
    • /
    • v.8 no.2
    • /
    • pp.73-87
    • /
    • 1975
  • Regional unconformities have been used as boundaries of major stratigraphic units in Korea. The term "synthem" has already been propsed for formal unconformity-bounded stratigraphic units of maximum magnitude (ISSC, 1974). The unconformity-based classification of the strata in the cratonic area in Korea comprises in ascending order the Kyerim, $Sangw{\check{o}}n$, $Jos{\check{o}}n$, $Py{\check{o}}ngan$, Daedong, and $Ky{\check{o}}ngsang$ Synthems, and the Cenozoic Erathem. The unconformites separating them from each other are either orogenic or epeirogenic (and vertical tectonic). The sub-$Sangw{\check{o}}n$ unconformity is a non-conformity above the basement complex in Korea. The unconformities between the $Sangw{\check{o}}n$, $Jos{\check{o}}n$, and $Py{\check{o}}ngan$ Synthems are disconformities denoting late Precambrian and Paleozoic crustal quiescence in Korea. The unconformities between the $Py{\check{o}}ngan$, Daedong, and $Ky{\check{o}}ngsang$ Synthems are angular unconformities representing Mesozoic orogenies. The bounding unconformities of the $Ky{\check{o}}ngsang$ Synthem involve non-conformable parts overlying the Jurassic and late Cretaceous granitic rocks.

  • PDF