• Title/Summary/Keyword: strapdown inertial navigation system

Search Result 67, Processing Time 0.026 seconds

SDINS Transfer Alignment using Adaptive Filter for Vertical Launcher (적응필터를 사용한 수직상태 SDINS 전달정렬)

  • Park, Chan-Ju;Lee, Sang-Jeong
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.10 no.1
    • /
    • pp.14-21
    • /
    • 2007
  • This paper proposes SDINS(strapdown inertial navigation system) transfer alignment method for vertical launcher using an adaptive filter in the ship. First, the velocity and attitude matching transfer alignment method is designed to align SDINS for vertical launcher. Second, the adaptive filter is employed to estimate measurement noise variance in real time using the residual of measurements. Because it is difficult to decide measurement noise variance when noise properties of the ship SDINS are changed. To verify its performance, it is compared with the EKF(Extended Kalman filter) using uncorrect measurement variance. The monte carlo simulation results show that proposed method is more effective in estimating attitude angle than EKF.

Fault Detection for Extended Kalman Filter Using a Predictor and Its Application to SDINS (예측필터를 이용한 확장칼만필터 고장검출 및 SDINS에의 적용)

  • Yu, Jae-Jong
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.9 no.3
    • /
    • pp.132-140
    • /
    • 2006
  • In this paper, a new fault detection method for the extended Kalman filter, which uses a N-step predictor, is proposed. The N-step predictor performs the only time propagations for N-step intervals without measurement updates and its output is used as a monitoring signal for the fault detection. A consistency between the extended Kalman filter and the N-step predictor is tested to detect a fault. A test statistic is defined by the difference between the extended Kalman filter and the N-step predictor. The proposed method is applied to strapdown inertial navigation system (SDINS). By computer simulation, it is shown that the proposed method detects a fault effectively.

Development of an Initial Coarse Alignment Algorithm for Strapdown Inertial Navigation System (스트랩다운 관성항법시스템의 초기 개략정렬 알고리즘 개발)

  • 박찬국;김광진;박흥원;이장규
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.5
    • /
    • pp.674-679
    • /
    • 1998
  • In this paper, a new coarse alignment algorithm is proposed for roughly determining the initial attitude of the vehicle. The algorithm, referred as two-step coarse alignment algorithm, computes roll and pitch angle of the vehicle using accelerometer outputs, and then determines yaw angle with gyro outputs. With the geometric relation between sensor outputs and attitude angles, the algorithm error is analytically derived and compared with the previous coarse alignment algorithm that computes a transformation matrix using accelerometer md gyro outputs simultaneously. The simulation is also performed by varying the sensor errors. The results show that the proposed two-step coarse alignment algorithm has better performance for east tilt angle.

  • PDF

Error Aalysis of Mechanical Parts and Dynamic Balancing in A Dynamically Tuned Gyroscope (동조자이로스코프의 기계부 오차 해석 및 동적밸런싱)

  • J.O. Young;C.G. Ahn;Lee, J.M.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.2
    • /
    • pp.13-22
    • /
    • 1997
  • Strapdown inertial navigation system(SDINS) is a navigational instruments necessary to guide and con- trol a free vehicle. In this study, an error analysis of mechanical parts is carried out for manufacturing a dynamically tuned gyroscope. The errors usually come from the tolerance in machining and assembly. In the error analysis, a criterion to be considered during designing and manufacturing is proposed by quanti- tatively analyzing the effect of DTG performance by tolerances. The theory of dynamic balancing is deduced and unbalance is reduced through experiment.

  • PDF

Design of SDINS Rapid Initial Alignment Technique Robust to the Pyro-shock in Multi-Launch Rocket System (연속발사 충격에 강인한 SDINS 신속 초기정렬기법 설계)

  • Lee, Hyung-Sub;Han, Kyung-Jun;Lee, Sang-Woo;Yu, Myeong-Jong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.6
    • /
    • pp.1038-1044
    • /
    • 2016
  • In this paper, a SDINS(Strapdown Inertial Navigation System) rapid initial alignment technique robust to the pyro-shock in multi-launch rocket system is proposed. The proposed method consists of three steps. Firth, transfer alignment is performed to estimate misalignment between MINS(Master INS) and SINS(Slave INS), and the estimated misalignment is written in the memory when transfer alignment is completed. Next, the pre-filtering process is performed to get rid of the acceleration error induced by launcher vibration. Finally, the horizontal alignment is performed to compensate misalignment variation caused by pyro-shock. We verified the performance of the proposed alignment method comparing with the conventional transfer alignment method. The simulation shows that the proposed initial alignment technique improves alignment performance.

LOS Determination Using INS for an Aircraft Mounted Satellite Tracking Antenna (관성측정기를 이용한 항공기용 위성추적 안테나의 지향각 결정)

  • Jung, Ha-Hyoung;Kim, Chung-Il;Lyou, Joon
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.49 no.3
    • /
    • pp.12-18
    • /
    • 2012
  • This paper presents a computation method of LOS(Line Of Sight) angle using IMU(Inertial Measurement Unit) for an antenna on aerial vehicle to point to a stationary satellite. In the overall system, the antenna is located at the front of the vehicle, and an IMU is introduced to account for body flexure dynamic. And using the differences between the position and velocity of the IMU based navigation and those of GPS/INS at the vehicle center. Kalman filter is designed to suppress Strapdown INS drift errors.

The Implementation of Tightly coupled SDINS/GPS System based on the Ring Laser Gyro (링레이저 자이로 기반 관성항법장치와 위성항법장치의 강결합 방식 시스템 구현)

  • Yu, Haesung;Park, Sang Eun;Jeong, Jinseob;Park, Heung-Won
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.2
    • /
    • pp.134-141
    • /
    • 2013
  • This paper explores a real-time system implementation to couple tightly StrapDown Inertial Navigation System(SDINS) and Global Positioning System(GPS) mounted on the aircraft. When implementing the SDINS/GPS coupled system in real-time processor, we have to deliberate SDINS's unique characteristics based on the ring laser gyro, and besides, lever-arm, measurements, and error compensation method. The novel modeling method is applied to system the misalignment error term of gyro to estimate the cumulative heading attitude errors while the aircraft banking to turn repeatedly. Captive Flight Test results show that the proposed modeling strategy has good performance.