• 제목/요약/키워드: strains inoculation

검색결과 333건 처리시간 0.028초

식물생장촉진 세균 Methylobacterium spp. 와 IAA 처리가 고추와 토마토 유묘의 생육에 미치는 영향 (Comparison of Plant Growth Promoting Methylobacterium spp. and Exogenous Indole-3-Acetic Acid Application on Red Pepper and Tomato Seedling Development)

  • ;;임우종;한광현;사동민
    • 한국토양비료학회지
    • /
    • 제43권1호
    • /
    • pp.96-104
    • /
    • 2010
  • 무균 및 온실조건에서 indole-3-acetic acid (IAA)의 처리와 1-aminocyclopropane-1-carboxylate deaminase (ACCD) 및 IAA 활성을 갖는 Methylobacterium 균주 접종 시 토마토와 고추의 생장을 비교 평가하였다. 무균조건에서 1.0 ${\mu}g\;mL^{-1}$의 IAA는 고추와 토마토의 뿌리생장을 촉진시키는데 비해 10.0 ${\mu}g\;mL^{-1}$ 이상의 높은 농도에서는 뿌리생장이 억제되었다. 그러나 높은 ACCD 활성을 갖고, IAA 활성은 낮거나 가지고 있지 않은 Methylobacterium 균주들을 접종하였을 때에는 고추와 토마토 모두 IAA 처리구 보다 뿌리생장이 증진되는 것을 확인하였다. 마찬가지로 온실조건에서 Methylobacterium 균주들을 접종했을 때, 마디길이와 잎의 크기 그리고 단위 면적당 잎의 무게 (SLW)에서 유의성 있는 증진효과를 보였다. 전반적인 식물 생장에서 저농도의 IAA 처리 효과는 Methylobacterium의 효과와 비슷한 경향을 나타냈다. 유묘의 지상부 길이는 ACCD 활성과 IAA 생산능을 갖는 Methylobacterium 균주 처리구에서 유의성 있는 증가를 확인할 수 있었으며, 전체 건물중 또한 Methylobacterium 처리 시 유의성 있는 증진 효과를 확인 할 수 있었다. 하지만 고농도의 IAA는 고추와 토마토의 생물량을 억제시켰다. 이러한 결과는 접종 균주의 IAA와 ACCD가 고추와 토마토 유묘의 생장 증진에 영향을 끼친다는 것을 증명한다.

Complete Genome Sequences of the Genomic RNA of Soybean mosaic virus Strains G7B and G5

  • Kim, Kook-Hyung;Lim, Won-Seok;Kim, Yul-Ho
    • The Plant Pathology Journal
    • /
    • 제19권3호
    • /
    • pp.171-176
    • /
    • 2003
  • The complete nucleotide sequences of the genomic RNAs of Soybean mosaic virus strains GS (SMV-G5) and G7H (SMV-G7H) were determined and compared with sequences of other SMV strains. Each viral RNA was determined to be 9588 nucleotides in length excluding the poly (A) tail and contained an open reading frame to encode a polyprotein subsequently processed into up to ten proteins by proteolytic cleavage. Com-parison of the amino acid sequences with those of other SMV strains showed high percentage of amino acid sequence homology with the same genome organization. The nucleotide and the deduced amino acid sequences between SMV-G5 and SMV-G7H were greater than 99% identity. When compared with those of other SMV strains in a phylogenetic analysis of the nucleotide and deduced amino acid sequences, they formed a distinct virus clade showing over 97% amino acid identity, but were more distantly related to the other potyvirus (44.1-69.6% identity). Interestingly, SMV G7H strain caused a severe mosaic or necrosis symptom in soybean cultivars including Jinpum-1, Jinpum-2, and Sodam, whereas, no symptom was observed in SMV-G5 inoculation. Complete nucleotide sequences of these strains will give clues for determining symptom determinant(s) in future research.

Modified sorbitol MacConkey agar for the rapid isolation of Escherichia coli O157:H7

  • Jung, Byeong-yeal;Jung, Suk-chan;Lee, Na-kyung;Cho, Seong-kun;Cho, Dong-hee;Her, Moon;Yoon, Yong-dhuk;Kim, Bong-hwan
    • 대한수의학회지
    • /
    • 제39권4호
    • /
    • pp.765-771
    • /
    • 1999
  • Unlike most Escherichia coli strains, E coli O157 : H7 didn't ferment sorbitol within 24h of incubation and showed a negative reaction for $\beta$-glucuronidase. We developed a new medium for the rapid isolation of E coli O157 : H7 using sorbitol MacConkey agar with cefixime, potassium tellurite and 4-methylumbelliferyl-${\beta}$-D-glucuronide (MUG) as a primary plating medium. The addition of $20{\mu}g/ml$ of vancomycin in enrichment broth for E coli O157 : H7 inhibited lots of Gram positive bacteria. Three strains (10.3%) of 29 non-O157 E coli strains and 3 strains (8.3%) of 36 Salmonella spp were inhibited at the $0.05{\mu}g/ml$ of cefixime and 23 strains (79.3%) of 29 non-O157 E coli strains and 12 strains (33.3%) of 36 Salmonella spp were inhibited at the $2.0{\mu}g/ml$ of potassium tellurite. But none of the E coli O157 : H7 was affected at these concentration. The addition of MUG at $100{\mu}g/ml$ level to sorbitol MacConkey agar with cefixime and potassium tellurite (CTM-SMAC) aided in the rapid isolation of E coli O157 : H7 from samples by checking sorbitol-negative and $\beta$-glucuronidase negative phenotypes simultaneously. In conclusion, inoculation of a positive in the O157 screening test from enrichment broth on CTM-SMAC appeared to be a rapid, cost-effective and sensitive method for the isolation of E coli O157 : H7.

  • PDF

2,4,5-trichlorophenoxyacetic acid 를 분해하는 세균의 분리 (Isolation of 2,4,5-Trichlorophenoxyacetic Acid-Degrading Bacteria)

  • 박영두;음진성
    • 한국토양비료학회지
    • /
    • 제33권1호
    • /
    • pp.47-51
    • /
    • 2000
  • 화합물을 분해하는 우수균주 개발의 기초연구로서, 대전 근교 지역의 논과 밭에서 채취한 토양 표품으로부터 100균주의 세균을 분리하였고, 그 중 2,4,5-T를 단일 탄소원으로 하는 고체 최소 배지에서 잘 자라는 균주 19균주를 선별하였다. 이들 균주를 등정한 결과 Pseudomonas속이 11균주 Acinetobacter속이 4균주, Alcaligenes속이 1균주이고 3균주는 미동정되었다. Pseudomonas속으로 밝혀진 MU19와 MU92는 네가지 염소계 화합물들(2,4-D, 2,4,5-T, MCPA 그리고 3CB)을 모두 분해하는 것으로 나타났다. 최소 액체배지에서 배양한 경우 Acinetobacter로 동정된 MU38균주가 접종 48시간 후에 가장 높은 분해도를 나타내었고, MUl9, MU57, MU73과 MU92는 그 다음으로 높은 분해도를 나타냈다. 실험결과 선별된 19균주 중 Acinetobacter sp. MU38 그리고 Pseudomonas sp. MU19과 MU92는 염소계 방향쪽 화합물에 대한 넓은 분해능을 갖고 있으며, 특히 2,4,5-T에 대한 높은 분해도를 나타내는 것으로 조사되었다.

  • PDF

Genetic Diversity and Population Structure of the Xanthomonas campestris pv. campestris Strains Affecting Cabbages in China Revealed by MLST and Rep-PCR Based Genotyping

  • Chen, Guo;Kong, Congcong;Yang, Limei;Zhuang, Mu;Zhang, Yangyong;Wang, Yong;Ji, Jialei;Fang, Zhiyuan;Lv, Honghao
    • The Plant Pathology Journal
    • /
    • 제37권5호
    • /
    • pp.476-488
    • /
    • 2021
  • Xanthomonas campestris pv. campestris (Xcc) is the causal agent of black rot for cruciferous vegetables worldwide, especially for the cole crops such as cabbage and cauliflower. Due to the lack of resistant cabbage cultivars, black rot has brought about considerable yield losses in recent years in China. Understanding of the pathogen features is a key step for disease prevention, however, the pathogen diversity, population structure, and virulence are largely unknown. In this study, we studied 50 Xcc strains including 39 Xcc isolates collected from cabbage in 20 regions across China, using multilocus sequence genotyping (MLST), repetitive DNA sequence-based PCR (rep-PCR), and pathogenicity tests. For MLST analysis, a total of 12 allelic profiles (AP) were generated, among which the largest AP was AP1 containing 32 strains. Further cluster analysis of rep-PCR divided all strains into 14 DNA groups, with the largest group DNA I comprising of 34 strains, most of which also belonged to AP1. Inoculation tests showed that the representative Xcc strains collected from diverse regions performed differential virulence against three brassica hosts compared with races 1 and 4. Interestingly, these results indicated that AP1/DNA I was not only the main pathotype in China, but also a novel group that differed from the previously reported type races in both genotype and virulence. To our knowledge, this is the first extensive genetic diversity survey for Xcc strains in China, which provides evidence for cabbage resistance breeding and opens the gate for further cabbage-Xcc interaction studies.

콩 근류균계간 경합과 숙주 친화성의 품종간 차이 (Competition and Host-strain Interaction of Soybean Rhizobium Strains on Two Soybean Cultivars)

  • 박의호;싱글톤폴
    • 한국작물학회지
    • /
    • 제41권6호
    • /
    • pp.718-724
    • /
    • 1996
  • 본 실험에서는 콩 재배품종과는 친화성이 없다고 알려진 R. fredii (fast-grower)와 기존의 근류균계인 B. japonicum 간의 상호작용 및 숙주친화성 등을 효율적으로 확인하기 위하여 뿌리분할방법(split-root system)을 사용하였으며, 근류균 이용을 위한 기초 자료를 얻을 목적으로 실험이 수행되었다. Lee와 Peking 품종 및 R. fredii인 PRC205(P205) 균계와 B. japonicum인 USDA110(U110) 균계를 이용하였다. 뿌리분할장치의 양분된 뿌리에 독립적으로 접종하였으며 처리당 4반복씩 완전임의로 배치하였다. 균계간 경합을 보기 위하여 4조합의 근류균계들을 분할장치 양측에 동시 접종하였으며, 또한 균계간 상호작용을 보기 위하여 6조합의 균계를 반분된 뿌리의 양측에 1주일 간격으로 접종하였다. 접종후 3주만에 근류착생 정도와 생육을 조사하였으며 그 결과를 요약하면 다음과 같다. 1. Lee품종에서는 분할된 뿌리 양쪽에 P205만 접종되었을 때 근류중이 가장 작았던 반면 Pe-king 품종에서는 P205만 접종되었을 때 근류중이 가장 컸다. 2. 두 균계를 동시에 접종했을 때 Lee 품종에서는 UlIO에 대해 P205의 경합력이 거의 없었으나 Peking 품종에서는 오히려 P205의 경합력이 더 높은 것으로 나타났다. 3. 양 품종 모두 처리에 따른 뿌리의 생육은 차이가 없었으나 지상부 생육량에서는 Lee 품종의 경우 P205만 처리되었을 때 현저히 적었으며 Peking 품종은 P205 단독처리에 비해 U110 단독처리시 적었다. 4. P205를 1차 접종했을 때 Lee품종의 경우 2차 접종된 side의 근류수와 근류중을 현저히 감소시켰는데 다만 U110의 근류수에는 영향을 주지 않았으며, Peking품종에서는 근류수에 미치는 영향은 적었으나 근류중은 상당히 억제하였다. 5. U110을 1차 접종했을 경우에는 두 품종 공히 반대편 side의 근류착생을 심하게 저해하였다. 6. Lee 품종의 경우 1차 접종된 균계가 2차 접종된 side의 뿌리생육을 다소 억제하였으나 처리간 차이가 있었으며 근류착생이 불량했던 P205 처리구에서도 뿌리의 생육은 양호하였다. 반면에 Poking 품종에서는 거의 차이를 나타내지 않았다. 7. 지상부 생육은 Lee품종의 경우 U110 1차 접종구가, Peking 품종에서는 P205 1차 접종구에서 양호하였다.

  • PDF

조류인플루엔자 바이러스의 양-반응 모형 (Dose-Response Relationship of Avian Influenza Virus Based on Feeding Trials in Humans and Chickens)

  • 박선일;이제용;전종민
    • 한국임상수의학회지
    • /
    • 제28권1호
    • /
    • pp.101-107
    • /
    • 2011
  • This study aimed to determine dose-response (DR) curve of avian influenza (AI) virus to predict the probability of illness or adverse health effects that may result from exposure to a pathogenic microorganism in a quantitative microbial risk assessment. To determine the parametric DR relationship of several strains of AI virus, 7 feeding trial data sets challenging humans (5 sets) and chickens (2 sets) for strains of H3N2 (4 sets), H5N1 (2 sets) and H1N1 (1 set) from the published literatures. Except for one data set (study with intra-tracheal inoculation for data set no. 6), all were obtained from the studies with intranasal inoculation. The data were analyzed using three types of DR model as the basis of heterogeneity in infectivity of AI strains in humans and chickens: exponential, beta-binomial and beta-Poisson. We fitted to the data using maximum likelihood estimation to get the parameter estimates of each model. The alpha and beta values of the beta-Poisson DR model ranged 0.06-0.19 and 1.7-48.8, respectively for H3N2 strain. Corresponding values for H5N1 ranged 0.464-0.563 and 97.3-99.4, respectively. For H1N1 the parameter values were 0.103 and 12.7, respectively. Using the exponential model, r (infectivity parameter) ranged from $1.6{\times}10^{-8}$ to $1.2{\times}10^{-5}$ for H3N2 and from $7.5{\times}10^{-3}$ to $4.0{\times}10^{-2}$ for H5N1, while the value was $1.6{\times}10^{-8}$ for H1N1. The beta-Poisson DR model provided the best fit to five of 7 data sets tested, and the estimated parameter values in betabinomial model were very close to those of beta-Poisson. Our study indicated that beta-binomial or beta-Poisson model could be the choice for DR modeling of AI, even though DR relationship varied depending on the virus strains studied, as indicated in prior studies. Further DR modeling should be conducted to quantify the differences among AI virus strains.

Effect of Brevibacterium iodinum RS16 and Methylobacterium oryzae CBMB20 Inoculation on Seed Germination and Early Growth of Maize and Sorghum-sudangrass hybrid Seedling under Different Salinity Levels

  • Kim, Ki-Yoon;Hwang, Seong-Woong;Saravanan, Venkatakrishnan Sivaraj;Sa, Tong-Min
    • 한국토양비료학회지
    • /
    • 제45권1호
    • /
    • pp.51-58
    • /
    • 2012
  • Salinity is one of the most relevant abiotic factor limiting crop yield and its net primary productivity. In addition, salinity induces an increased stress ethylene synthesis in plants which, in turn, exacerbate the responses to the stressor. Bacterial single or co-inoculation effect was tested using previously characterized plant growth promoting (PGP) bacteria Brevibacterium iodinum RS16 and Methylobacterium oryzae CBMB20 on maize and sorghum-sudan grass hybrid under different concentrations of NaCl. Non-inoculated maize and sorghum-sudangrass hybrid showed 33.4% and 20.0% reduction in seed germination under highest NaCl (150 mM) level tested. However, under the same NaCl concentration, co-inoculation with B. iodinum RS16 and M. oryzae CBMB20 PGP strains increased the seed germination in maize (16.7%) and sorghum-sudangrass hybrid (4.4%). In Gnotobiotic growth pouch experiments conducted for maize and sorghum-sudangrass hybrid, co-inoculation of PGP B. iodinum RS16 and M. oryzae CBMB20 mitigated the salinity stress and promoted root length by 22.9% and 29.7%, respectively. Thus the results of this study could help in development of potential bioinoculants that may be suitable for crop production under saline conditions.

고추의 생장에 미치는 Azospirillum brasilense 및 Methylobacterium oryzae 접종 효과 (Effect of Inoculation of Azospirillum brasilense and Methylobacterium oryzae on the Growth of Red Pepper Plant)

  • 김병호;사동민;정종배
    • 한국환경농학회지
    • /
    • 제30권2호
    • /
    • pp.223-228
    • /
    • 2011
  • BACKGROUND: Rhizosphere bacteria may improve plant growth and productivity both by supply nutrients and hormonal stimulation. Although many experiments have shown improvements in plant growth with inoculation of bacterial cultures to the rhizosphere, the main obstacle in the applications of plant growth promoting rhizobacteria in a large scale is the inconsistency of the results. We tested the growth promoting effects of Azospirillum and Methylobacterium strains on red pepper plant. METHODS AND RESULTS: Red pepper seedlings were grown for 25 days in a growth media inoculated with A. brasilense CW903 or M. oryzae CBMB20. The seedlings were transplanted and grown for 45 days in pots with soil in a greenhouse, at half the recommended level of fertilizer. Bacterial culture, $4.0{\times}10^9$ for A. brasilense CW903 and $5.8{\times}10^8$ CFU for M. oryzae CBMB20, was applied in root zone soil periodically every 10 days during the experiment. Inoculation of M. oryzae CBMB20 significantly increased the red pepper plant growth in terms of leaf number, height and mass of shoot, or root mass compared to uninoculated control plants. Although beneficial effects of A. brasilense on plant growth of many crops were observed, the growthpromoting effect of A. brasilense CW903 on red pepper plant was not found in this study. CONCLUSION(s): The factors responsible for the irregularities in plant growth promoting of rhizobacteria are difficult to elucidate. Extensive inoculation experiments in the greenhouse and in the field should enable us to define the factors critical to obtain successful application of plant growth promoting rhizobacteria.

Inoculation Effect of Methanotrophs on Rhizoremediation Performance and Methane Emission in Diesel-Contaminated Soil

  • Ji Ho Lee;Hyoju Yang;Kyung-Suk Cho
    • Journal of Microbiology and Biotechnology
    • /
    • 제33권7호
    • /
    • pp.886-894
    • /
    • 2023
  • During the rhizoremediation of diesel-contaminated soil, methane (CH4), a representative greenhouse gas, is emitted as a result of anaerobic metabolism of diesel. The application of methantrophs is one of solutions for the mitigation CH4 emissions during the rhizoremediation of diesel-contaminated soil. In this study, CH4-oxidizing rhizobacteria, Methylocystis sp. JHTF4 and Methyloversatilis sp. JHM8, were isolated from rhizosphere soils of tall fescue and maize, respectively. The maximum CH4 oxidation rates for the strains JHTF4 and JHM8 were 65.8 and 33.8 mmol·g-DCW-1·h-1, respectively. The isolates JHTF4 and JHM8 couldn't degrade diesel. The inoculation of the isolate JHTF4 or JHM8 significantly enhanced diesel removal during rhizoremediation of diesel-contaminated soil planted with maize for 63 days. Diesel removal in the tall fescue-planting soil was enhanced by inoculating the isolates until 50 days, while there was no significant difference in removal efficiency regardless of inoculation at day 63. In both the maize and tall fescue planting soils, the CH4 oxidation potentials of the inoculated soils were significantly higher than the potentials of the non-inoculated soils. In addition, the gene copy numbers of pmoA, responsible for CH4 oxidation, in the inoculated soils were significantly higher than those in the non-inoculated soils. The gene copy numbers ratio of pmoA to 16S rDNA (the ratio of methanotrophs to total bacteria) in soil increased during rhizoremediation. These results indicate that the inoculation of Methylocystis sp. JHTF4 and Methyloversatilis sp. JHM8, is a promising strategy to minimize CH4 emissions during the rhizoremediation of diesel-contaminated soil using maize or tall fescue.